
CoreABC v3.1
Handbook

http://www.actel.com/survey/rating/?f=CoreABC_HB.pdf

Actel Corporation, Mountain View, CA 94043
© 2010 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200085-5

Release: September 2010

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of merchantability or fitness
for a particular purpose. Information in this document is subject to change without notice. Actel assumes no responsibility for any
errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any unauthorized person without prior
written consent of Actel Corporation.

Trademarks
Actel, Actel Fusion, IGLOO, Libero, Pigeon Point, ProASIC, SmartFusion and the associated logos are trademarks or registered
trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective owners.

CoreABC v3.1

Table of Contents
Introduction . 5
CoreABC Overview . 5

Supported Device Families . 6

Core Version . 6

Supported Interfaces . 6

Supported Tool Flows . 6

Utilization and Performance . 6

1 Internal Architecture . 11

2 Tool Flows . 13
Licenses . 13

SmartDesign . 13

Simulation Flows . 13

Synthesis in Libero IDE . 13

Place-and-Route in Libero IDE . 14

3 CoreABC Interfaces . 15
Overview of Interfaces . 15

Parameters . 15

EN_DATAM Parameter . 18

Ports . 19

4 CoreABC Programmer’s Model. 21
Address Spaces . 21

Registers . 22

Instruction Set . 22

5 CoreABC Operation . 27
ACM Lookup Table for Use with CoreAI . 27

Stack . 27

Interrupt Operation . 27

6 CoreABC Configuration . 29
Configurable Options . 30

Cross-Validation of Configuration Fields . 32

NVM Data Width on AFS090 Device . 34

7 CoreABC Programming. 35
Analysis . 36

CoreABC Instruction Modes . 36

8 Testbench and Simulation . 53
Unit Testbench . 53

System Simulation . 53
3

Table of Contents
Simulation Logging . 54

9 Example Design Using CoreABC . 55
Create a New Project . 56

Create a SmartDesign Design . 58

Instantiate, Configure, and Connect the Components . 58

System Simulation . 60

Simulation of CoreABC Only (unit test) . 64

Synthesis . 66

Place-and-Route . 66

10 CoreABC v2.3 Migration Guide . 67

A Example Instruction Sequence . 69

B Instruction Summary . 73
Instructions . 73

Condition Codes . 88

C List of Document Changes . 89

D Product Support . 91
Customer Service . 91

Actel Customer Technical Support Center . 91

Actel Technical Support . 91

Website . 91

Contacting the Customer Technical Support Center . 91

Index . 93

Introduction

CoreABC Overview
CoreABC (ABC = APB bus controller) is a simple, configurable, low gate count, programmable state
machine/controller primarily targeted toward the implementation of Advanced Microcontroller Bus Architecture
(AMBA®) Advanced Peripheral Bus (APB) based designs. It is particularly suitable in the following situations:

• A programmable controller is required but a full featured CPU such as Core8051s or ARM® Cortex™-M1
is not needed or cannot be justified due to cost or resource/size constraints.

• A full featured CPU based system requires a CoreABC based programmable offload engine/coprocessor
subsystem for performance reasons.

• An Actel Fusion® system using CoreAI or CorePWM, for example, requires programmable control either
as a standalone design or as a Fusion analog offload engine/coprocessor for a larger CPU based system.

CoreABC supports a comprehensive assembler based configurable instruction set architecture and extensive and
flexible configuration of size and feature options, allowing it to be tuned to meet the resource constraints and
processing power requirements of a wide variety of applications.

CoreABC supports three program storage modes:

• Hard mode: program image is stored in an internal ROM implemented in FPGA fabric tiles

• Soft mode: program image is stored in Actel FPGA RAM blocks which are initialized at runtime from the
binary image stored in Fusion NVM or an external flash memory

• NVM mode (Fusion only): program image stored in and executed directly from Fusion NVM

CoreABC is available through the Actel Libero® Integrated Design Environment (IDE) IP Catalog, through which
it can be downloaded from a remote web-based repository and installed into the user's local vault, ready for use. It
operates natively within the SmartDesign design entry environment, allowing it to be easily instantiated,
configured, and connected to other IP core instances and generated ready for simulation, synthesis, etc. CoreABC is
an AMBA3 APB master which can connect to and manage any APB slave peripherals via an AMBA3 APB bus
fabric component such as CoreAPB3.

Figure 1 shows a CoreABC based system that can monitor analog inputs, adjust output levels, and report status via
an RS-232 link using CoreUART.

Figure 1 • Typical CoreABC System

CoreABC

Parallel
I/O Out

Parallel
I/O In

APB Bus

CoreAI

CorePWM

CoreUART
5

Introduction
Supported Device Families
Fusion

IGLOO®

IGLOOe

IGLOO PLUS

ProASIC®3L

ProASIC3

ProASIC3E

ProASICPLUS

Axcelerator®

RTAX-S

Core Version
This handbook supports CoreABC v3.0.

Supported Interfaces
CoreABC has an AMBA3 APB master interface, which is described in "CoreABC Interfaces" on page 15.

When configured in NVM mode, an additional AMBA3 APB slave interface is available for accessing the NVM
block used to store instructions within CoreABC. APB access to the instruction NVM block may be used, for
example, to maintain a nonvolatile log of data values in cases where only one NVM block is available for
CoreABC's use.

When configured in soft mode, an initialization and configuration (InitCfg) interface is used for initializing the
RAM blocks used for CoreABC's instruction memory.

Supported Tool Flows
CoreABC requires Actel Libero IDE v8.6 SP1 or later. Additionally, Verilog users MUST use Synplicity® v8.6.1 or
later, which is downloadable from www.synplicity.com.

Utilization and Performance
CoreABC utilization varies depending on how it is configured. Table 1 below and Table 2 on page 9 provide typical
utilization data for a range of devices and data widths. The other configuration options for the core are collectively
grouped to give three different CoreABC configurations named small, medium, and large; these configurations are
listed in Table 3-1 on page 15. CoreABC can be implemented in several Actel FPGA devices.

Table 1 • CoreABC Utilization Data (Hard Mode—instructions held in tiles)

Family
Data

Width Config. Comb. Seq. RAM Total Device Utilization
Frequency

MHz*

Fusion
ProASIC®3/E
IGLOO™/e

 8 Small 179 46 0 225 AFS600
A3P600
AGL600

1.6% 92

ProASICPLUS 8 Small 195 51 0 246 APA450 2.0% 81

Axcelerator®
RTAX-S

 8 Small 96 45 0 141 AX250
RTAX250

3.3% 123

Note: *The frequency given in the table does not apply to the IGLOO devices. IGLOO family devices will run
significantly slower than the speed listed in the table.
6

www.synplicity.com

Utilization and Performance
Fusion
ProASIC3/E
IGLOO/e

16 Small 238 59 0 297 AFS600
A3P600
AGL600

2.1% 79

ProASICPLUS 16 Small 269 63 0 332 APA450 2.7% 79

Axcelerator
RTAX-S

16 Small 127 57 0 184 AX250
RTAX250

4.4% 98

Fusion
ProASIC3/E
IGLOO/e

32 Small 319 74 0 393 AFS600
A3P600
AGL600

2.8% 58

ProASICPLUS 32 Small 381 84 0 465 APA450 3.9% 60

Axcelerator
RTAX-S

32 Small 192 78 0 270 AX250
RTAX250

6.4% 97

Fusion
ProASIC3/E
IGLOO/e

 8 Medium 363 76 1 439 AFS600
A3P600
AGL600

3.2% 55

ProASICPLUS 8 Medium 439 88 1 527 APA450 4.3% 41

Axcelerator
RTAX-S

 8 Medium 229 76 1 305 AX250
RTAX250

7.2% 86

Fusion
ProASIC3/E
IGLOO/e

16 Medium 558 88 1 646 AFS600
A3P600
AGL600

4.7% 41

ProASICPLUS 16 Medium 630 95 2 725 APA450 5.9% 32

Axcelerator
RTAX-S

16 Medium 307 92 1 399 AX250
RTAX250

9.4% 73

Fusion
ProASIC3/E
IGLOO/e

32 Medium 896 104 2 1,000 AFS600
A3P600
AGL600

7.2% 37

ProASICPLUS 32 Medium 947 112 4 1,059 APA450 8.6% 28

Axcelerator
RTAX-S

32 Medium 442 108 2 550 AX250
RTAX250

13.0% 64

Fusion
ProASIC3/E
IGLOO/e

 8 Large 474 82 1 556 AFS600
A3P600
AGL600

4.0% 42

ProASICPLUS 8 Large 565 94 1 659 APA450 5.4% 38

Axcelerator
RTAX-S

 8 Large 291 86 1 377 AX250
RTAX250

8.9% 71

Fusion
ProASIC3/E
IGLOO/e

16 Large 648 94 1 742 AFS600
A3P600
AGL600

5.4% 27

ProASICPLUS 16 Large 763 105 2 868 APA450 7.1% 24

Table 1 • CoreABC Utilization Data (Hard Mode—instructions held in tiles) (continued)

Family
Data

Width Config. Comb. Seq. RAM Total Device Utilization
Frequency

MHz*

Note: *The frequency given in the table does not apply to the IGLOO devices. IGLOO family devices will run
significantly slower than the speed listed in the table.
7

Introduction
Axcelerator
RTAX-S

16 Large 399 98 1 497 AX250
RTAX250

11.8% 69

Fusion
ProASIC3/E
IGLOO/e

32 Large 1,014 111 2 1,125 AFS600
A3P600
AGL600

8.1% 34

ProASICPLUS 32 Large 1,082 126 4 1,208 APA450 9.8% 18

Axcelerator
RTAX-S

32 Large 586 119 2 705 AX250
RTAX250

16.7% 53

Table 1 • CoreABC Utilization Data (Hard Mode—instructions held in tiles) (continued)

Family
Data

Width Config. Comb. Seq. RAM Total Device Utilization
Frequency

MHz*

Note: *The frequency given in the table does not apply to the IGLOO devices. IGLOO family devices will run
significantly slower than the speed listed in the table.
8

Utilization and Performance
Table 2 • CoreABC Utilization Data (Soft Mode—instructions held in RAM)

Family
Data

Width Config. Comb. Seq. RAM Total Device Utilization
Frequency

MHz*

Fusion
ProASIC3/E
IGLOO/e

 8 Small 126 27 3 153 AFS600
A3P600
AGL600

1.1% 68

ProASICPLUS 8 Small 137 30 6 167 APA450 1.4% 53

Axcelerator
RTAX-S

 8 Small 61 27 3 88 AX250
RTAX250

2.1% 95

Fusion
ProASIC3/E
IGLOO/e

16 Small 179 36 4 215 AFS600
A3P600
AGL600

1.6% 67

ProASICPLUS 16 Small 213 41 8 254 APA450 2.1% 50

Axcelerator
RTAX-S

16 Small 94 35 4 129 AX250
RTAX250

3.1% 84

Fusion
ProASIC3/E
IGLOO/e

32 Small 353 53 5 406 AFS600
A3P600
AGL600

2.9% 46

ProASICPLUS 32 Small 359 58 10 417 APA450 3.4% 42

Axcelerator
RTAX-S

32 Small 155 52 5 207 AX250
RTAX250

4.9% 65

Fusion
ProASIC3/E
IGLOO/e

 8 Medium 326 56 4 382 AFS600
A3P600
AGL600

2.8% 46

ProASICPLUS 8 Medium 409 59 7 468 APA450 3.8% 34

Axcelerator
RTAX-S

 8 Medium 210 55 4 265 AX250
RTAX250

6.3% 59

Fusion
ProASIC3/E
IGLOO/e

16 Medium 548 64 5 612 AFS600
A3P600
AGL600

4.4% 40

ProASICPLUS 16 Medium 659 73 10 732 APA450 6.0% 28

Axcelerator
RTAX-S

16 Medium 271 64 5 335 AX250
RTAX250

7.9% 58

Fusion
ProASIC3/E
IGLOO/e

32 Medium 851 80 8 931 AFS600
A3P600
AGL600

6.7% 32

ProASICPLUS 32 Medium 892 96 16 988 APA450 8.0% 26

Axcelerator
RTAX-S

32 Medium 399 80 8 479 AX250
RTAX250

11.3% 50

Fusion
ProASIC3/E
IGLOO/e

 8 Large 462 62 5 524 AFS600
A3P600
AGL600

3.8% 40

Note: *The frequency given in the table does not apply to the IGLOO devices. IGLOO family devices will run
significantly slower than the speed listed in the table.
9

Introduction
ProASICPLUS 8 Large 534 67 9 601 APA450 4.9% 31

Axcelerator
RTAX-S

 8 Large 282 61 5 343 AX250
RTAX250

8.1% 63

Fusion
ProASIC3/E
IGLOO/e

16 Large 626 71 6 697 AFS600
A3P600
AGL600

5.0% 25

ProASICPLUS 16 Large 732 83 12 815 APA450 6.6% 21

Axcelerator
RTAX-S

16 Large 380 70 6 450 AX250
RTAX250

10.7% 56

Fusion
ProASIC3/E
IGLOO/e

32 Large 1,053 86 8 1,139 AFS600
A3P600
AGL600

8.2% 34

ProASICPLUS 32 Large 1,228 106 16 1,334 APA450 10.9% 27

Axcelerator
RTAX-S

32 Large 579 85 8 664 AX250
RTAX250

15.7% 46

Table 2 • CoreABC Utilization Data (Soft Mode—instructions held in RAM) (continued)

Family
Data

Width Config. Comb. Seq. RAM Total Device Utilization
Frequency

MHz*

Note: *The frequency given in the table does not apply to the IGLOO devices. IGLOO family devices will run
significantly slower than the speed listed in the table.
10

1 – Internal Architecture

CoreABC internal architecture is shown in Figure 1-1. The core consists of six main blocks:

• Instruction block

• Sequencer

• ALU and Flags

• Storage

• Analog configuration MUX (ACM)

• APB controller

The Instruction block contains the instruction counter and the instruction table that contains the instructions to be
executed. In soft mode, these instructions are fetched from RAM internal to CoreABC.

The ALU and Flags block implements the main ALU block. Each of the supported operations can be disabled to
obtain a minimal-gate-count solution. The Storage block provides local storage for data values and implements the
stack required by the call instruction.

The ACM block implements a small lookup table that can be initialized with the configuration data required by
CoreAI. This allows the analog functions within a Fusion FPGA to be easily configured.

Figure 1-1 • CoreABC Block Diagram

RAM
Register

Bank and
Stack

Storage

ACM

APB
Data

APB Interface
State Machine

APB Controller

APB Master
Interface

ACM
Lookup
Table

APB Slave Interface
(NVM mode only)

APB
Access

Instruction
Address
Register

Next
Address

Address

+1

Address

Address

Address

Operation

Data

Data

ALU

ALU and Flags

MULT

AND

OR

XOR

ADD

SHL

SHR

LOAD

Data

Z Register Command

Sequencer

Control State Machine

Data out

Data in

Address

Data

Instruction Block

Instruction
Register

Instruction
Table

Interrupt

Parallel I/0 Out

Parallel I/0 In

A
cc

u
m

u
la

to
r

R
eg

is
te

r

11

Internal Architecture
The APB controller implements an AMBA3 APB master interface for controlling both AMBA3 and AMBA2 APB
peripherals. Typically a number of APB peripherals will be in use and in such cases the CoreAPB3 bus interface
core should be used to connect the various APB cores to CoreABC's master APB interface. Finally, the Sequencer
controls the operation of the core, decoding of the instructions and enabling of the other blocks.

To keep tile counts low, all unused functions within CoreABC can be removed during synthesis by configuring the
core appropriately.
12

2 – Tool Flows

Licenses
CoreABC is licensed in two ways: Obfuscated and RTL. Tool flow functionality may be limited, depending on your
license.

Obfuscated
Complete RTL code is provided for the core, enabling the core to be instantiated, configured, and generated within
SmartDesign. Simulation, Synthesis, and Layout can be performed with Actel Libero Integrated Design
Environment (IDE). The RTL code for the core is obfuscated.

RTL
Complete RTL source code is provided for the core.

SmartDesign
CoreABC is available for download to the SmartDesign IP Catalog via the Libero IDE web repository. For
information on using SmartDesign to instantiate, configure, connect, and generate cores, refer to the Libero IDE
online help.

The APB master interface of CoreABC will typically be connected to the mirrored master interface of CoreAPB3,
with various APB slaves connected to the slave interfaces of CoreAPB3.

The core can be configured using the configuration GUI within SmartDesign. See the "CoreABC Configuration"
section on page 29 for more details on configuring CoreABC.

Simulation Flows
SmartDesign and Libero IDE facilitate running both a user (or unit) testbench for CoreABC and a basic system
testbench for the complete SmartDesign design. You may wish to expand on these simulation capabilities to suit the
particular needs of your project. For example, you could make a copy of the system testbench, add additional code
to monitor or interact with the design and then use this new testbench as stimulus in a simulation.

To run the CoreABC unit testbench, set the Testbench configuration option to User in the CoreABC configuration
GUI before generating the design. After generation, set the design root to be the CoreABC instance and click the
Simulation (ModelSim) button. ModelSim will launch and run the unit test.

To run the system testbench for the SmartDesign design, set the design root to be the (SmartDesign) design after
generation and again click the Simulation button. ModelSim will launch and run the system simulation.

See "Testbench and Simulation" on page 53 for more details on simulation.

Synthesis in Libero IDE
To run synthesis with the configuration selected in the configuration GUI, set the design root appropriately and
click the Synthesis icon in Libero IDE to launch the Synplicity® synthesis tool. Click the Run button in the
synthesis window to run synthesis.
13

Tool Flows
Place-and-Route in Libero IDE
Having set the design route appropriately and run Synthesis, click the Place&Route icon in Libero IDE to invoke
Designer. CoreABC requires no special place-and-route settings.
14

3 – CoreABC Interfaces

Overview of Interfaces
CoreABC has an AMBA3 APB master interface which typically will be connected to CoreAPB3. When in NVM
mode (INSMODE parameter set to 2), an additional AMBA3 APB slave interface is available for data type access
to the (NVM) instruction store.

Note: When CoreABC is mastering CoreAPB3, the APB Slot Size configuration option settings should match for
both of these cores.

In soft mode (INSMODE parameter set to 1), an initialization and configuration (InitCfg) interface is available for
initializing the RAM blocks used as CoreABC's instruction store. This interface is intended to be used to connect to
a Flash Memory System Builder (FMSB) RAM Initialization client. The use of FMSB clients is supported only on
Fusion devices. On other device families, a different means must be employed to initialize the instruction RAM
blocks through the InitCfg interface. This could involve implementing some logic to allow another processor in the
system to communicate with the InitCfg interface.

In addition to the interfaces already mentioned, CoreABC has clock, reset, and interrupt related signals as well as
general purpose parallel input and output buses. The widths of these input and output buses are configurable.

Parameters
The parameters described are those directly in the RTL. When working with CoreABC in the SmartDesign tool, a
configuration GUI is available for setting these parameters. The recommended configuration flow is to use the
configuration GUI in SmartDesign, which will then set these parameters correctly. Importantly, when using the
configuration GUI, the parameter settings will be cross checked with the CoreABC program (which is entered in
another tab of the configuration GUI). The configuration GUI will indicate any inconsistencies between the
program and the parameter settings. See "CoreABC Configuration" on page 29 for more information on the
configuration GUI.

Table 3-1 • CoreABC Parameters

Parameter Values Description

Value

Small Medium Large

APB_AWIDTH 8 to 16 Sets the width of the APB address bus. 8 8 8

APB_DWIDTH 8, 16, or 32 Sets the width of the APB data bus. 8, 16, 32 8, 16, 32 8, 16, 32

APB_SDEPTH 1 to 16 Sets the number of supported APB devices. 1 4 16

ICWIDTH 1 to 16 Sets the maximum number of supported
instructions. Number of allowed instructions is
2ICWIDTH.

ICWIDTH must be APB_AWIDTH.

5 8 8

ZRWIDTH 0 to 16 Sets the width of the Z register. A setting of 8
would allow for a maximum value of 28 (i.e., 256).
Zero will disable and remove the Z register.

0 8 8

IIWIDTH 1 to 32 Sets the width of the IO_IN input. IIWIDTH must
be APB_DWIDTH.

1 4 4

IFWIDTH 1 to 28 Sets how many of the IO_IN bits can be used with
the conditional instructions. IFWIDTH must be
 APB_DWIDTH – 4.

IOWIDTH 1 to 32 Sets the width of the IO_OUT output. IOWIDTH
must be APB_DWIDTH.

1 8 8
15

CoreABC Interfaces
STWIDTH 1 to 8 Sets the size of the internal stack counter used to
support the call instruction and interrupt function.
The depth of the stack is 2STWIDTH.

1 4 4

EN_RAM 0 or 1 When 1, a RAM block is used in the core to
provide 256 storage locations. This RAM is also
used to store return addresses for the call and
interrupt functions.

0 1 1

EN_AND 0 or 1 When 1, the ALU supports the AND function. 1 1 1

EN_XOR 0 or 1 When 1, the ALU supports the XOR function. 1 1 1

EN_OR 0 or 1 When 1, the ALU supports the OR function. 0 1 1

EN_ADD 0 or 1 When 1, the ALU supports the ADD function. 0 1 1

EN_INC 0 or 1 When 1, the ALU supports the INC function. 0 1 1

EN_SHL 0 or 1 When 1, the ALU supports the SHL/ROL
function.

0 1 1

EN_SHR 0 or 1 When 1, the ALU supports the SHR/ROR
function.

0 1 1

EN_CALL 0 or 1 When 1, the core supports the call and return
operations.

0 1 1

EN_PUSH 0 or 1 When 1, the core supports the push and pop
operations.

0 1 1

EN_ACM 0 or 1 When 1, enables the ACM initialization table. 0 1 1

EN_DATAM 0 to 3 Controls internal multiplexing; see "EN_DATAM
Parameter" on page 18.

1 1 1

EN_INT 0 to 2 Enables the external interrupt function. When 0,
interrupts are disabled. When 1, INTREQ is active
high. When 2, INTREQ is active low.

0 1 1

EN_MULT 0 to 3 Enables the hardware multiplier; four options exist
(example for 16-bit core):

0: No hardware multiplier

1: Half multiplier, P(15:0) <= A(7:0) * B(7:0)

2: Full multiplier returning lower half, P(15:0) <=
A(15:0) * B(15:0)

3: Full multiplier returning upper half, P(31:16)
<= A(15:0) * B(15:0)

0 0 0

EN_IOREAD 0 or 1 When 1, the IOREAD instruction is enabled. 0 1 1

EN_IOWRT 0 or 1 When 1, the IOWRT instruction is enabled. 1 1 1

EN_ALURAM 0 or 1 When 1, the Boolean and Arithmetic instructions
can operate on memory contents.

0 1 1

EN_INDIRECT 0 or 1 When 1, the Z register can be used to generate the
APB address, and the APBWRTZ and
APBREADZ instructions are enabled.

0 0 1

ISRADDR 0 to 65,535 The address CoreABC should jump to when
responding to an interrupt request.

0 220 220

Table 3-1 • CoreABC Parameters (continued)

Parameter Values Description

Value

Small Medium Large
16

Parameters
INSMODE 0 to 2 When 0, the instructions are contained in internal
logic gates, implementing a ROM function. When
1, internal RAM blocks are used to hold the
instruction sequence. When 2, internal NVM is
used to hold the instruction sequence.
INSMODE = 2 is supported only on Fusion
devices.

0 0 1

ACT_CALIBRATIONDATA 0 or 1 When 1, the NVM block containing the
calibration data for the device is selected if
INSMODE = 2. When 0, any available NVM
block may be used. This option is only applicable
when INSMODE = 2, which implies that a Fusion
device is being used.

N/A N/A N/A

IMEM_APB_ACCESS 0 to 2 When 0, APB access to instruction memory is not
supported. When 1, read only APB access to
instruction memory is possible. When 2, read and
write APB access to instruction memory is
supported.

N/A N/A N/A

INITWIDTH 1 to 16 Specifies the width of the INITADDR input used
to initialize the instruction RAM blocks when
INSMODE = 1. The actual width depends on
several generic values. Utilities used to support
soft operation calculate this value.

0 0 16

DEBUG 0 or 1 When 1 during simulation, a detailed log will be
generated of the internal operation.

N/A N/A N/A

TESTMODE 0 to 16 Selects a predefined set of instructions used for
core verification. This should be set to 0 unless the
verification test sequences are being used.

N/A N/A N/A

UNIQ_STRING_LENGTH 0 to 256 This parameter gives the length (number of
characters) of the unique string which is derived
from the instance name of a particular CoreABC
instance. This parameter forms part of the
mechanism which allows multiple instances of
CoreABC to be easily used in a single design.

N/A N/A N/A

MAX_NVMDWIDTH 16 or 32 Indicates the maximum bit width supported on the
data buses connecting to any NVM macro within
CoreABC. This parameter is only applicable when
CoreABC is configured to operate in NVM mode
which is only possible for a Fusion device. This
parameter is not directly controllable from the
configuration GUI but is instead automatically set
to match the target device. A setting of 16 is
applied when an AFS090 device is targeted. For
all other devices the parameter is set to 32.

N/A N/A N/A

Table 3-1 • CoreABC Parameters (continued)

Parameter Values Description

Value

Small Medium Large
17

CoreABC Interfaces
EN_DATAM Parameter
This allows various internal multiplexers to be optimized out of the core, lowering tile counts. The settings
supported are given in Table 3-2 through Table 3-5 on page 18, and the tables show which instructions are allowed
with each setting.

Table 3-2 • Accumulator Only (EN_DATAM = 0)

Immediate Data Accumulator

APBWRT No Yes + ACM

RAMWRT No Yes

PUSH No Yes

LOADZ No Yes

IOWRT No Yes

Table 3-3 • Immediate Only (EN_DATAM = 1)

Immediate Data Accumulator

APBWRT Yes No

RAMWRT Yes No

PUSH Yes No

LOADZ Yes No

IOWRT Yes No

Table 3-4 • Accumulator and Immediate (EN_DATAM = 2)

Immediate Data Accumulator

APBWRT Yes Yes + ACM

RAMWRT Yes Yes

LOADZ Yes Yes

PUSH Yes Yes

IOWRT Yes Yes

Table 3-5 • Instruction-Dependent (EN_DATAM = 3)

Immediate Data Accumulator

APBWRT No Yes + ACM

RAMWRT No Yes

PUSH No Yes

LOADZ Yes No

IOWRT Yes No
18

Ports
Ports
All CoreABC inputs are sampled, and outputs clocked, on the rising edge of PCLK.

Table 3-6 • CoreABC Port Descriptions

Name Type Description

PCLK In Clock input

NSYSRESET In Reset input (asynchronous active low)

PRESETN Out Reset output; synchronized version of NSYSRESET

PENABLE_M Out APB master interface enable signal

PWRITE_M Out APB master interface write signal

PSEL_M Out APB master interface select signal

PADDR_M[19:0] Out APB master interface address bus. The width of this address bus is fixed at 20 bits but some of the
upper bits may not be significant, depending on the configuration of the core. The number of
significant bits is determined by the APB_AWIDTH and the APB_SDEPTH parameters. Number of
significant bits = APB_AWIDTH + log base 2 (APB_SDEPTH).

PWDATA_M[x:0] Out APB master interface write data bus. The width is controlled by APB_DWIDTH.

PRDATA_M[x:0] In APB master interface read data bus. The width is controlled by APB_DWIDTH.

PREADY_M In APB master interface ready input.

PSLVERR_M In APB master interface slave error signal. This input currently is not used by CoreABC.

IO_IN[x:0] In General-purpose inputs. The width is controlled by IIWIDTH.

IO_OUT[x:0] Out General-purpose outputs. The width is controlled by IOWIDTH.

INTREQ In Interrupt request input. When this input is asserted, the instruction sequence will jump to the address
set by the ISRADDR parameter.

INTACT Out Indicates that the core has entered the interrupt service routine.

INITDATAVAL In Enable signal (active high) indicating that the INITADDR and INITDATA inputs are valid. When
using a SmartGen initialization client, this signal connects to the client select signal.

INITDONE In Indicates that initialization has been completed (active high) and the core should start operating.

INITADDR[x:0] In Connects to the INITADDR output of the INITCFG block used to configure the RAM blocks when
INSMODE = 1. When INSMODE = 0, these inputs should be tied to logic 0. The width of this input
is controlled by the INITWIDTH generic.

INITDATA[8:0] In Connects to the INITDATA output of the INITCFG block, used to configure the RAM blocks when
INSMODE = 1. When INSMODE = 0, these inputs should be tied to logic 0.

PSEL_S In Select signal of APB slave interface used to access instruction memory in NVM mode

PENABLE_S In Enable signal of APB slave interface used to access instruction memory in NVM mode

PWRITE_S In Write signal of APB slave interface used to access instruction memory in NVM mode.

PADDR_S[x:0] In Address bus of APB slave interface used to access instruction memory in NVM mode. Width is
determined by APB_AWIDTH.

PWDATA_S[x:0] In Write data bus of APB slave interface used to access instruction memory in NVM mode. Width is
determined by APB_DWIDTH.

PRDATA_S[x:0] Out Read data bus of APB slave interface used to access instruction memory in NVM mode. Width is
determined by APB_DWIDTH.
19

CoreABC Interfaces
PSLVERR_S Out Error signal of APB slave interface used to access instruction memory in NVM mode.

PREADY_S Out Ready signal of APB slave interface used to access instruction memory in NVM mode.

Table 3-6 • CoreABC Port Descriptions (continued)

Name Type Description
20

4 – CoreABC Programmer’s Model

CoreABC is an accumulator based load/store architecture with multiple independent memory spaces. It is
effectively a Harvard architecture (independent instruction and data address spaces). Most instructions act only on
the accumulator, but there are specific instructions to access the memory spaces described below.

Address Spaces
The instruction address space is linear and is implemented as a hard-coded instruction table (hard mode), or an
internal instruction RAM (soft mode), or an internal NVM block (NVM mode). This is implicitly accessed by
control transfer instructions such as JUMP and CALL, but it cannot be directly read or written otherwise, except in
the case where APB read/write data type access to instruction memory is enabled in NVM mode. In NVM mode, if
APB data type read/write access to the instruction memory is enabled, it is possible to modify or overwrite
CoreABC's program. Normally you will not want to do this and you must take care to ensure that the CoreABC
program does not unintentionally corrupt itself. In practice this usually just means setting the SECTOR, PAGE, and
SPARE_PAGE registers in the APB interface to NVM instruction memory to sufficiently high values. That is, read
and write data type accesses to the NVM instruction memory should normally be to a region of the NVM above the
program which is located from address 0x0000 onwards. See the "APB Access to Instruction Memory" section on
page 51 for more details.

The data address spaces are shown in Figure 4-1. There are three separate, independent addressable areas. These are
accessed by using instructions or instruction modes unique to each one.

Internal Data RAM Address Space (optional)
This is an optional internal 256-location RAM storage area. It can be accessed directly using the RAMREAD and
RAMWRT instructions, and implicitly using the PUSH and POP instructions (the stack, if one is present, is located
at the top of RAM). The ALU instructions can also source the secondary operand from the RAM storage area. The
width of each RAM location is equal to the data width of the processor (APB_DWIDTH) or the width of the
instruction counter (ICWIDTH), whichever is greater.

I/O Address Space
This is a general-purpose input/output area that is accessed by IOREAD (to load the accumulator from the input) or
IOWRT (to write the accumulator to the output) and the INPUTn test instructions (to read the inputs—for example,
JUMP IF INPUT3).

Figure 4-1 • CoreAPB Data Address Spaces

I/O – OUT

RAM I/O APB

0xFF

0x00

I/O – IN

Slot n

Slot 0
21

CoreABC Programmer’s Model
APB Address Space
The APB master interface of CoreABC typically will be connected to CoreAPB3 to provide access to up to 16
peripherals. If CoreABC is connected to CoreAPB3, the settings for the APB Slot Size configuration options of
these cores must match. For example, if CoreABC is configured for a slot size of 256 locations, CoreAPB3 must
also have its slot size set to 256 locations. APB peripherals are accessed by APBWRT (to write to an APB
peripheral) and APBREAD (to read from an APB peripheral). Both the slot number and the address within the slot
must be specified in these instructions.

Registers

Accumulator
The accumulator (ACC) holds the result of data operations and is APB_DWIDTH (8, 16, or 32) bits wide.

Z Register (Optional)
The optional Z register (Z) is a general purpose register which may be used, for example, as a loop counter. The Z
register is used to provide the address to the APB space when the APBREADZ and APBWRTZ instructions are
executed. When present, the Z register is ZRWIDTH (1 to 16) bits wide.

Flags Register—Inputs and Condition Codes
CoreABC maintains a control register that is used in the conditional instructions; e.g., JUMP and CALL. This
register cannot be read or used directly; instead, each named field can be used to control particular instructions. The
Flags register has two sections, as shown in Figure 4-2.

There are three condition code type flags:

ZERO: Accumulator zero

NEGATIVE: Accumulator negative

ZZERO: Register zero

There are n INPUTS (n 28), INPUT0 … INPUTn, which are directly mapped to the general purpose inputs
connected to CoreABC's IO_IN[n:0] port. The number of these is configurable up to the lower of 28 or
APB_DWIDTH – 4, where APB_DWIDTH is the width specified for the external APB data bus.

From these basic fields, other conditions are constructed and made available in the instruction set.

Instruction Set
Table 4-1 through Table 4-8 on page 26 list the supported instructions. On the right hand side of these tables there
are columns entitled Flags and Cycles. The Flags column contains two sub-columns, Acc. Zero and Acc. Neg., and
the entries under these columns are either Yes or No. "Yes" indicates that the relevant flag, accumulator zero (Acc.
Zero) or accumulator negative (Acc. Neg.), is affected by the instruction named in that row of the table. Similarly, a

Figure 4-2 • Flags and Inputs Register

INPUTn INPUT0
Z Register

Zero
Acc
Neg

Acc
Zero
22

Instruction Set
"No" entry indicates that the flag is not affected by the instruction. The entries in the Cycles column give the
number of (PCLK) clock cycles required for each instruction.

Table 4-1 • The Boolean and Arithmetic Instruction Group

Instruction1, 2 Description

Flags

CyclesAcc. Zero Acc. Neg.

LOAD DAT Data Load accumulator with value. Yes Yes 3

LOAD RAM Address Load accumulator with value. Yes Yes 3

AND DAT Data Bitwise AND accumulator with immediate data. Yes Yes 3

AND RAM Address Bitwise AND accumulator with RAM location. Yes Yes 3

OR DAT Data Bitwise OR accumulator with immediate data. Yes Yes 3

OR RAM Address Bitwise OR accumulator with RAM location. Yes Yes 3

XOR DAT Data Bitwise XOR accumulator with immediate data. Yes Yes 3

XOR RAM Address Bitwise XOR accumulator with RAM location. Yes Yes 3

INC Increment accumulator. Yes Yes 3

DEC Decrement accumulator. Yes Yes 3

ADD DAT Data Add immediate data to accumulator. Yes Yes 3

ADD RAM Address Add RAM location to accumulator. Yes Yes 3

SUB DAT Data Subtract immediate data from accumulator.

SUB RAM is not supported.

Yes Yes 3

MULT DAT Data Multiply accumulator by immediate data.

Core parameters determine multiplier return value.

Yes Yes 3

MULT RAM Address Multiply accumulator by RAM location.

Core parameters determine multiplier return value.

Yes Yes 3

CMP DAT Data Compare accumulator to immediate data.

ZERO set if equal; NEGATIVE set if MSBs differ.

Yes Yes 3

CMP RAM Address Compare accumulator to RAM location.

ZERO set if equal; NEGATIVE set if MSBs differ.

Yes Yes 3

CMPLEQ DAT Data Compare accumulator to immediate data.

ZERO set if equal; NEGATIVE set if ACC < Data.

CMPLEQ RAM is not supported.

Yes Yes 3

SHL0 Shift accumulator left and infill with 0. Yes Yes 3

SHR0 Shift accumulator right and infill with 0. Yes Yes 3

SHL1 Shift accumulator left and infill with 1. Yes Yes 3

SHR1 Shift accumulator right and infill with 1. Yes Yes 3

SHLE Shift accumulator left and infill with LSB. Yes Yes 3

SHRE Shift accumulator right and infill with MSB. Yes Yes 3

Notes:

1. For most instructions, when using the configuration GUI, the DAT keyword can be omitted.

2. DAT may be replaced with DAT8 or DAT16 when only lower 8 or 16 data bits contain valid data. Using DAT8/DAT16 will
reduce tile counts when instructions are held in logic tiles (that is, when the core is configured to operate in hard mode).
23

CoreABC Programmer’s Model
ROL Rotate accumulator left. Yes Yes 3

ROR Rotate accumulator right. Yes Yes 3

BITCLR Data Clear one bit in accumulator specified by argument (AND). In
this case, the data value specifies the bit position.

Yes Yes 3

BITSET Data Set one bit in accumulator specified by argument (OR). In this
case, the data value specifies the bit position.

Yes Yes 3

BITTST Data Test one bit in accumulator. ZERO set if all requested bits are
clear. In this case, the data value specifies the bit position.

Yes Yes 3

Table 4-2 • The Memory Instruction Group

Instruction Description

Flags

CyclesAcc. Zero Acc. Neg.

PUSH Push the accumulator onto the stack. No No 3

PUSH ACC Push the accumulator onto the stack. No No 3

PUSH DAT Data Push immediate data onto stack. No No 3

POP Pop data from the stack to the accumulator and update
the flags.

Yes Yes 3

RAMWRT Address ACC Write accumulator to RAM address. Yes Yes 3

RAMWRT Address DAT Data Write immediate data to RAM address. Yes Yes 3

RAMREAD Address Read data from RAM address to the accumulator and
update the flags.

No No 3

Table 4-1 • The Boolean and Arithmetic Instruction Group (continued)

Instruction1, 2 Description

Flags

CyclesAcc. Zero Acc. Neg.

Notes:

1. For most instructions, when using the configuration GUI, the DAT keyword can be omitted.

2. DAT may be replaced with DAT8 or DAT16 when only lower 8 or 16 data bits contain valid data. Using DAT8/DAT16 will
reduce tile counts when instructions are held in logic tiles (that is, when the core is configured to operate in hard mode).
24

Instruction Set
Table 4-3 • The Z Register* Instruction Group

Instruction Description

Flags

CyclesAcc. Zero Acc. Neg.

LOADZ ACC Load Z with accumulator. No No 3

LOADZ DAT Data Load Z with immediate value. No No 3

ADDZ ACC Add accumulator to Z and store in Z.

Only ZZERO flag is affected.

No No 3

ADDZ DAT Data Add immediate data to Z and store in Z.

Only ZZERO flag is affected.

No No 3

SUBZ DAT Data Subtract immediate data from Z and store in Z.

Only ZZERO flag is affected

SUBZ ACC is not supported.

No No 3

INCZ Increment Z. Only ZZERO flag is affected. No No 3

DECZ Decrement Z. Only ZZERO flag is affected. No No 3

Note: *The Z register is intended to be used as loop counter or APB address register.

Table 4-4 • The APB Instruction Group

Instruction Description

Flags

CyclesAcc. Zero Acc. Neg.

APBREAD Slot Address Read from APB. No No 5

APBWRT ACC Slot Address Write accumulator to APB at chosen address. No No 5

APBWRT ACM Slot Address Write value of ACM table, at location given by
accumulator, to APB at chosen address.

No No 5

APBWRT DAT Slot Address Data Write data to chosen address. No No 5

APBREADZ Slot Read from APB. The Z register specifies the APB
address.

No No 5

APBWRTZ ACC Slot Write accumulator to APB. The Z register specifies the
APB address.

No No 5

APBWRTZ ACM Slot Write value of ACM table, at location given by
accumulator. The Z register specifies the APB address.

No No 5

APBWRTZ DAT Slot Data Write data; the Z register specifies the APB address. No No 5

Table 4-5 • The I/O Instruction Group

Instruction Description

Flags

CyclesAcc. Zero Acc. Neg.

IOWRT ACC Write accumulator to I/O register. No No 3

IOWRT DAT Data Write data value to I/O register. No No 3

IOREAD Load the accumulator with the I/O input value. No No 3
25

CoreABC Programmer’s Model
Table 4-6 • The Flow Control Instruction Group

Instruction Description

Flags

CyclesAcc. Zero Acc. Neg.

JUMP Condition $Label Jump to label. No No 3

JUMP IF/IFNOT Condition $Label Jump on condition to label. No No 3

WAIT UNTIL/WHILE Condition Stop at this instruction until condition is TRUE. No No 3

CALL $Label As JUMP, but puts return address on stack. No No 3

CALL IF/IFNOT Condition $Label As JUMP, but puts return address on stack. No No 3

RETURN Return from a CALL. No No 3

RETURN IF/IFNOT Condition Return from a CALL on condition. No No 3

RETISR Condition Return from an interrupt. No No 3

RETISR IF/IFNOT Condition Return from an interrupt on condition. No No 3

HALT Stop at this instruction. Interrupts will still be
processed. HALT is a synonym for WAIT, and
generally used without a condition.

No No Indefinite

Table 4-7 • Conditions for Flow Control Instruction Group

Condition Description

ALWAYS Always. You can get the same effect as this by not specifying any condition.

ZERO Accumulator zero

NEGATIVE Accumulator negative

ZZERO Z register zero

INPUT0 Input0 set

INPUT1 Input1 set and similarly for higher Inputs, if available.

POSITIVE Equivalent to NOT NEGATIVE

LTE_ZERO Less than or equal to zero; the combination NEGATIVE OR ZERO

GT_ZERO Greater than zero; the combination NOT (NEGATIVE OR ZERO)

Table 4-8 • Other Instructions

Instruction Description

Flags

CyclesAcc. Zero Acc. Neg.

NOP No operation No No 3
26

5 – CoreABC Operation

ACM Lookup Table for Use with CoreAI
When generating a SmartDesign design that contains an instance of CoreABC, a check is made to detect if an
instance of CoreAI is being mastered by CoreABC’s APB master interface. CoreAI may be connected directly to
CoreABC if it is the only APB slave being controlled by CoreABC but, more typically, CoreAI will be one of a
number of slaves under the control of CoreABC, with all the cores connected together using the CoreAPB3 bus
fabric core. In either scenario the presence of CoreAI in CoreABC’s APB address space will be detected.

If CoreABC is controlling a CoreAI instance, a lookup table will be implemented within CoreABC. This lookup
table will hold data for initializing the CoreAI analog configuration multiplexer (ACM) and the table’s contents will
be derived from the configuration information entered in CoreAI’s configuration GUI. The APBWRT ACM
instruction can be used in CoreABC’s program to easily load the ACM initialization values for CoreAI. This
instruction uses the accumulator value to index into the ACM lookup table to generate the actual data value written.
The "Example Instruction Sequence" on page 69 shows the initialization of ACM registers (within the instruction
loop beginning with the label "$WaitRegProg").

Note: CoreAI is a Fusion-specific core, which means that it can only be used on a Fusion device. This implies that
the ACM lookup table and the APBWRT ACM instructions described in the preceding paragraphs are only
relevant when designing for a Fusion device.

Stack
The upper 2STWIDTH memory locations in the 256-location internal storage are used for storing the stack contents.
If STWIDTH = 4 (stack is 16 locations deep), the stack will occupy locations 0xF0 to 0xFF. There is no underflow
or overflow detection on the stack pointer, so it will simply wrap around from 0xF0 to 0xFF on push operations and
0xFF to 0xF0 on pop operations (assuming STWIDTH = 4).

The RAMREAD and RAMWRT instructions can be used to read and modify the values pushed onto the stack. An
indirect jump instruction can be implemented by pushing the required jump address on the stack and executing a
return instruction.

Interrupt Operation
When INTREQ is asserted, the core will jump to the interrupt service routine (ISR) on completion of the current
instruction. As it does so, it will assert the INTACT (interrupt active) output. The last instruction in the ISR should
be a RETISR (return from ISR) instruction. When the RETISR instruction is executed, the INTACT output is
cleared. INTACT acts as the interrupt acknowledge, and INTREQ should be deactivated when INTACT becomes
active. The core will ignore additional interrupt requests while INTACT is active.

The core will respond to an interrupt request within six clock cycles—five clock cycles for the current instruction to
complete,1 plus one additional clock cycle in the core.

The value held in the instruction counter is pushed onto the stack on entering the interrupt service routine. This
value is popped from the stack when exiting the routine to provide the return address. The contents of the ZERO
and NEGATIVE flags are saved internally (rather than on the stack) on entry to the interrupt service routine and
restored on the RETISR instruction. When the ISR is entered, the ZERO and NEGATIVE flags will contain the flag
values present when the previous ISR was executed. The accumulator register is not saved on entry to the ISR. The
ISR should push and pop the accumulator to preserve its contents.

The INTREQ polarity can be active low or active high. This is set by the EN_INT parameter.

1. If an APB-related instruction (such as APBREAD or APBWRT) is active when the interrupt occurs, more than five cycles may be
required for the instruction to complete if the APB access is extended by pulling the PREADY_M input low for a number of cycles.
27

CoreABC Operation
If an interrupt occurs when the HALT or WAIT instructions are being executed, then, after completion, the ISR will
return to the HALT or WAIT instruction, unless the ISR does something to remove the reason for the WAIT or
modifies the stack contents; e.g., it could POP the return address, modify it, and PUSH it back on the stack.

When the interrupt functionality is being used, CoreABC's program will often be structured such that the first
instruction (at instruction address 0) is a JUMP to the main loop of the program and the ISR will be located
immediately after this, at instruction address 1. The instructions of the main loop will be located just after the ISR in
the program memory.
28

6 – CoreABC Configuration

The CoreABC configuration GUI is launched when instantiating the core in a SmartDesign design. After
instantiation, the configuration GUI can be opened by double-clicking on the CoreABC instance or by right-
clicking and selecting Configure Component.

The configuration GUI has three tabs: Parameters, Program, and Analysis.

Select the Parameters tab on the CoreABC configuration GUI to begin configuring the core. When you do this, you
will see the screen shown in Figure 6-1.

Figure 6-1 • Configuration Parameters
29

CoreABC Configuration
Configurable Options
Each of the configurable options presented on the Parameters tab of the configuration GUI is explained in the
following sections.

Data Bus Width
Selects the width of the data bus within CoreABC and on the APB master interface (and on the APB slave interface,
if present). Possible settings are 8, 16, or 32 bits. The accumulator width is equal to the value set for Data Bus
Width.

Number of APB Slots
This sets the maximum number of APB slots CoreABC can address. Each slot is a location for connecting an APB
peripheral, so ensure that you allocate enough slots for your design. It is easy to set this at a later stage in your
design if you wish, when you have a clear understanding of the peripherals you are connecting.

APB Slot Size
This sets the number of locations in each APB slot. Possible settings range from 256 to 64K locations. This setting
should match the corresponding setting (also called APB Slot Size) on any instance of CoreAPB3 mastered by
CoreABC.

Maximum Number of Instructions
This allocates the instruction space for your program (in a range from 2 to 65,536 instructions). You should not
make this larger than necessary, as it is used for configuring multiplexers and will directly impact the size of the
core.

Z Register Size
This sets the maximum Z register size you intend to use in your program. This is used to set the size on the Z
register and associated logic, so the smaller you make it, the smaller your core. There is also a disable setting to
remove this feature.

Number of I/O Inputs
This sets the number of inputs configured on CoreABC. These can be read using the IOREAD instruction. The
range is 1–32.

Number of I/O Flag Inputs
This sets the number of inputs connected into the conditional logic. These are accessible for controlling JUMP and
similar instructions as INPUT0 – INPUT27 (note that the first input is INPUT0!). The range is 1–28.

Number of I/O Outputs
This sets the maximum number of output lines from CoreABC. The range is 1–32. These can be written to using the
IOWRT instruction, which allows the accumulator to be written to the output register.

Stack Size
CALL and RETURN instructions use a stack to store the return address when subroutines are used. The stack size
can be set in this drop-down list. Note that this list will be grayed out (disabled) if Internal Data/Stack Memory is
not enabled, because the stack is allocated from that memory.
30

Configurable Options
Instruction Store
This is a very important setting that determines whether CoreABC is in hard, soft, or NVM mode. The options are
as follows:

Hard (FPGA tiles) – The program instructions are stored in FPGA tiles which are effectively used to build a
hard-coded ROM. No RAM or NVM blocks are instantiated for instruction storage.

Soft (FPGA RAM) – The program instructions are stored in RAM blocks instantiated inside CoreABC.

NVM – The program instructions are stored in an NVM block instantiated within CoreABC. This instruction
store option is only available on Fusion devices.

Init/Config Address Width
This is only applicable when Instruction Store is set to Soft. This option sets the address width of the InitCfg
interface for initializing the RAM blocks which provide the instruction store inside a soft mode CoreABC. The
easiest way to determine the setting for this option is to look at the Instruction Store Details section under the
Analysis tab. The fifth bullet point in this section gives the required width in number of bits.

Instruction Store APB Access
This is only applicable when Instruction Store is set to NVM. This option sets the type of access to the instruction
store NVM. Possible settings are None, Read Only, or Read/Write.

Use Calibration NVM
This check box option is only applicable when Instruction Store is set to NVM and, when selected, causes
CoreABC to request use of the NVM block holding the device calibration data for its instruction store. One of the
NVM blocks on the device will hold the calibration data in a spare page. Checking this option causes the
ACT_CALIBRATIONDATA parameter to be set to 1 on the NVM instance within (an NVM mode) CoreABC
instance. It is possible that some other NVM instance not related to CoreABC in the design may also have its
ACT_CALIBRATIONDATA parameter set to 1. In this case, CoreABC is not guaranteed to be allocated the NVM
block holding the calibration data.

Internal Data/Stack Memory
Set this option ON if you are going to use the internal scratchpad RAM (with RAMREAD and RAMWRT
instructions) or the stack (for CALL and RETURN instructions).

ALU Operation from Memory
This allows the ALU data input to accept both immediate data and data from the RAM. It enables ADD RAM and
similar instructions.

APB Indirect Addressing
This allows the Z register to be used as the source of the APB address for APB instructions (that is, setting this
option effectively enables instructions such as APBREADZ and APBWRTZ).

Supported Data Sources
This controls the EN_DATAM parameter; refer to "EN_DATAM Parameter" on page 18. Setting this to
“Accumulator and Immediate” will increase tile counts.

Interrupt Support
This allows you to enable or disable interrupt support. If you specify active high or active low interrupt, the
interrupt logic is automatically included. When you enable the interrupt logic, you should also set the ISR Address.
31

CoreABC Configuration
ISR Address
The ISR address should be set when you have enabled the interrupt logic. It is the instruction address from which
CoreABC will fetch the next instruction to be executed after an interrupt is detected. At the end of the ISR, you will
have a return from interrupt (RETISR) instruction. The default value for ISR address is 1. This setting is suitable for
a program which is structured such that the first instruction (at address 0) is a jump to the main part of the program
and the ISR is located from address 1 onward (the main part of the program would be located just after the ISR
code).

Optional Instructions
There is a range of instructions that can be omitted or included in CoreABC to control the size. This empowers you
to make size/performance tradeoffs. If you have used omitted instructions in your program, you will receive a
validation warning.

License
This option is used to generate either obfuscated or plain text RTL code for the core, depending on the type of
license you have. An obfuscated license enables you to generate obfuscated RTL code. An RTL license permits
generation of either obfuscated or plain text RTL code.

Testbench
Set this to User if you want a user testbench generated with your core.

Verbose Simulation Log
This enables the feature that allows CoreABC to log the operations being performed during simulation along with
the current accumulator values. See the "Testbench and Simulation" section on page 53 for more details.

Cross-Validation of Configuration Fields
There is extensive cross-validation of settings in the CoreABC configuration screen to ensure that the overall
configuration is consistent. This also extends to validation between the program and the configuration. Most
possible inconsistencies are covered.

Figure 6-3 shows the symbols that are displayed to indicate a possible error. When you click the symbol
(Figure 6-2), information is given as to the precise nature of the problem.

Figure 6-2 • Error Symbol

32

Cross-Validation of Configuration Fields
In the example shown in Figure 6-3, the Maximum Z Register has been set to Disabled, but there is an instruction in
the program (LOADZ) which requires that the Z register features are available.

In general, the validation is more extensive on the Parameters tab than on the Program tab, so it is a good idea to
take a look at the Parameters tab when you have completed writing your program.

Some cross-validation actually grays out fields that are inappropriate when other settings have not been made.

Figure 6-3 • CoreABC Configuration Validation
33

NVM Data Width on AFS090 Device
On an AFS090 device, the data width when accessing NVM is limited to a maximum of 16 bits. On other Fusion
devices, 32 bit access to NVM is supported. This has implications when targeting an NVM mode CoreABC design
at an AFS090 device. For such a design, if a data bus width of 32 is selected along with read only or read/write APB
access to the instruction store NVM, the following message will be displayed on pressing the OK button of the
CoreABC configuration GUI:

As the message indicates, APB accesses to the NVM instruction store will be limited to 16 bits in this case even
though a data width of 32 has been selected. 32 bit access is supported to any other slaves which may be connected
to the APB bus. Click the OK button on this message to dismiss the message (and the CoreABC configuration
window).

Figure 6-4 • AFS090 Data Width Message

7 – CoreABC Programming

CoreABC programs are written and assembled under the Program tab of the CoreABC Configuration GUI, as
shown in Figure 7-1. You can view an analysis of your code under the Analysis tab.

Figure 7-1 • CoreABC Programming Screen
35

CoreABC Programming
Analysis
If the Analyze program as I type check box is selected (under the Program tab), your program is continuously
analyzed as you write it, to detect any syntax or other errors. These errors are immediately flagged, and information
about them is provided. Color coding of the program is used, with comments appearing in green, valid instructions
in blue, and errors in red. As the program becomes larger, analysis takes longer with each character typed and this
eventually impacts usability. If this is an issue, you can turn off analysis (by clearing the check box) when you enter
the program. You can then turn on the analysis again when the program is complete or almost complete.

Under the Analysis tab, you will find useful information and statistics on your program, most of which is self
explanatory. For example, the instructions used in the program are listed and this information may be useful for
optimizing your CoreABC instance by omitting support for any unused instructions (under the Optional
Instructions section of the Parameters tab). In soft or NVM mode, the Analysis tab will also contain information of
use when creating a Flash Memory System Builder Data Storage or Initialization Client.

CoreABC Instruction Modes
The instruction store configuration option (INSMODE parameter) controls how CoreABC’s instructions are stored.
For all device families, hard mode and soft mode instruction stores are possible. For the Fusion family, an
additional NVM mode is also available. Each of these instruction storage modes is described below.

Hard Mode
In hard mode, the instructions are stored in FPGA tiles. Essentially, tiles are used to build an instruction ROM. The
instructions.v or instructions.vhd RTL file implements the instruction store and this file is automatically created
when a CoreABC based design is generated within SmartDesign.

From a design implementation point of view, hard mode is probably the simplest mode. The RTL files completely
describe the core and its program and can simply be run through synthesis, compile, layout, etc., along with any
other components in the design.

Soft Mode
In soft mode, the instructions are stored in RAM blocks on the device. The number of RAM blocks required to hold
the program increases with increasing program size and instruction width. The instruction width increases with
increasing address width (APB_AWDITH), data width (APB_DWIDTH), and number of locations per APB slot
(APB_SDEPTH). Details on the instruction width and the number of instruction store RAM blocks required can be
found under the Analysis tab of the CoreABC configuration GUI.

In soft mode, the instructram.v or instructram.vhd RTL file instantiates the required number of RAM blocks within
CoreABC. When a design containing a soft mode CoreABC instance is generated in SmartDesign, memory files are
created for initializing the instruction RAM blocks during simulation. These files (one per RAM block) are
automatically placed in the project’s simulation folder to facilitate easy simulation. In addition to these files, a
single, consolidated memory file is created. This file is intended for use in initializing the instruction RAM when
the design is implemented on a device. When a Fusion device is being used, this consolidated memory file typically
will be used to create a RAM Initialization client using the Flash Memory System Builder (FMSB) utility. For a
non-Fusion device, you must manually implement some other means of initializing the RAM blocks.
36

CoreABC Instruction Modes
Soft Mode Flow on a Fusion Device
The following sequence of steps describes how to implement a soft mode CoreABC instance on a Fusion device.
The steps describe the use of an FMSB RAM Initialization client to initialize CoreABC’s instruction RAM.

1. Set the Instruction Store option to Soft (FPGA RAM) as shown in Figure 7-2. If there are any validation
warnings, ensure that the Init/Config Address Width is configured appropriately.

Figure 7-2 • Init/Config Address Width
37

CoreABC Programming
2. In the CoreABC configurator Analysis view, as shown in Figure 7-3, note the configuration details which
will be needed when configuring a Fusion Flash Memory System Builder [RAM] Initialization Client.

3. These FMSB Initialization Client configuration details are also written to the CoreABC.log file, which
appears in the Design Explorer > Files view under Components > [SmartDesign-name] > Report Files.

Figure 7-3 • Initialization Client Configuration
38

CoreABC Instruction Modes
4. Save the CoreABC configuration. Note in SmartDesign that the InitCfg bus interface now appears on the
CoreABC instance (Figure 7-4).

5. The next task is to instantiate, configure, stitch, and generate a Fusion Flash Memory System Builder
initialization client into the design to store the soft mode program image in an NVM block and to initialize
the CoreABC soft mode program storage RAM blocks at startup time. However, we do not yet have the
required soft mode program image so cannot do this yet. For this reason we must generate the currently
incomplete design first.

Choose SmartDesign > Generate Design.

You will get a warning about the CoreABC InitCfg bus interface not being connected, but you can ignore
this for now (or temporarily mark this bus interface unused when generating here).

6. Open the CoreABC.log file mentioned in step 2 so that you can view the configuration details required for
the soft mode CoreABC’s FMSB initialization client. Select and copy the name of the Actel-Binary format
RAM memory image file and keep CoreABC.log visible while configuring the FMSB initialization client.

Figure 7-4 • CoreABC Instance
39

CoreABC Programming
7. Go to the Libero IDE Catalog, expand the treeview under Fusion Peripherals and double-click on the Flash
Memory System Builder. Choose an initialization client, click Add to System, and then configure the
client to match the details given in CoreABC.log (Figure 7-5).

Figure 7-5 • Modify Initialization Client
40

CoreABC Instruction Modes
8. Click OK and then Generate. Name the instance and click OK again. Back in SmartDesign, the Flash
Memory System Builder initialization client instance should now appear as shown in Figure 7-6.

Figure 7-6 • Flash Memory System Builder Initialization Client
41

CoreABC Programming
9. Select the Initialization client instance and choose SmartDesign > Auto Connect Selected Instance(s)
and SmartDesign will connect the CoreABC’s slave InitCfg slave interface to the initialization client’s
master interface. Manually connect the remaining initialization client’s signals, as shown in Figure 7-7.

10. The design is now complete and can be generated using SmartDesign > Generate Design.

11. Go to the Libero IDE Project Flow view and click on Synplify® to run synthesis.

12. When synthesis has completed, exit Synplify and then click on Place & Route to run Compile, Layout, and
Programming File generation.

Figure 7-7 • Connect Initialization Client’s Signal
42

CoreABC Instruction Modes
13. When you click on Programming File in Designer to run FlashPoint, to generate the programming file (a
PDB file, for example), you will get the warning shown in Figure 7-8 if the SmartDesign design was
recently regenerated. This is because the FMSB initialization client’s input Actel binary soft mode program
image file is more recent than the generated EFC file, so you need to reimport the updated input file.

14. Click on Modify > Import Content and reimport the soft mode Actel binary memory image file. The
Import dialog should open on the correct folder containing the file (i.e., <Libero-project-
root>\component\work\<SmartDesign-name>\<CoreABC-instance-name>). Click OK and then Finish to
generate the programming file (PDB file). Click Generate and, if warned about overwriting a previously
generated programming file, accept/confirm this. Once the Programming File button in Designer turns
green, exit Designer and return to the Libero IDE Program Flow view.

15. You can now program the device. The program image will be programmed into an NVM block and, at
startup time, this image will be used to initialize the soft mode CoreABC instruction RAM blocks.

16. IMPORTANT: If you change your CoreABC configuration or program, you must ensure that the
Initialization client configuration matches the details presented in the CoreABC configurator’s Analysis
view. If you forget to do this, it could result in an incorrectly formatted or incomplete program image being
stored or initialized to CoreABC RAM blocks.

NVM Mode
With a Fusion device it is possible to set the Instruction Store option to NVM. When this setting is selected, the
CoreABC program is stored in an NVM block and the instructions are read directly from NVM during operation.

In NVM mode, the instructnvm.v or instructnvm.vhd RTL file instantiates an NVM block within CoreABC. When
a design containing an NVM mode CoreABC instance is generated in SmartDesign, memory files are created for
initializing the NVM block during simulation and to enable the NVM block to be programmed with the program
image during programming of the Fusion device. The simulation-related memory file is automatically placed in the
project’s simulation folder to facilitate easy simulation. The file which is related to programming of the NVM block
has a *.hex suffix and contains information in the Intel Hex format. This file is intended to be used to create a Data
Storage client using the Flash Memory System Builder (FMSB) utility.

Figure 7-8 • Import Updated Input File
43

CoreABC Programming
NVM Mode Flow on a Fusion Device
The following sequence of steps describes how to implement an NVM mode CoreABC instance on a Fusion
device. The steps describe the creation of an FMSB Data Storage client to produce an embedded flash configuration
(EFC) file which contributes to the overall programming file for the device. The CoreABC program is effectively
contained in this EFC file.

1. Set the Instruction Store option to NVM, as shown in Figure 7-9.

Figure 7-9 • Instruction Store Option
44

CoreABC Instruction Modes
2. The CoreABC configurator Analysis view note (Figure 7-10) shows the configuration details which will be
needed when configuring a Fusion Flash Memory System Builder Data Storage Client.

The CoreABC generator also emits a text version of the Analysis view content into a log file (<Libero-
project-root>\component\work\<SmartDesign-name>\<CoreABC-instance-name>\CoreABC.log). It will
appear in the Design Explorer > Files view under Components > [SmartDesign-name] > Report Files >
CoreABC.log. This will be used in the following steps when configuring the FMSB Data Storage Client.

3. Choose SmartDesign > Generate Design.

4. Go to Design Explorer > Files > Components > [SmartDesign-name] > Report Files and open
CoreABC.log, which contains the same details as the CoreABC configurator Analysis view. In particular it
includes the details required for configuration of the Fusion Flash Memory System Builder Data Storage
Client required for the NVM mode CoreABC instance. Scroll down to the Fusion Flash Memory System
Builder Data Storage Client configuration section. Select and copy the name of the NVM mode Intel-Hex

Figure 7-10 • Analysis View
45

CoreABC Programming
memory image file. You will paste this into the FMSB Data Storage Client configuration in a subsequent
step. Keep the CoreABC.log file open so that it is visible and you can see the other FMSB Data Storage
Client configuration details during the next steps.

5. In the Libero IDE Catalog, right-click the Fusion Peripherals > Flash System Memory Builder core and
choose Configure core (Figure 7-11). It is not necessary to create an FMSB instance (by double-clicking or
choosing Instantiate in <SmartDesign-name>), although creating one will not cause a problem.

6. Select Data Storage client type and click Add to System, as shown in Figure 7-12.

Figure 7-11 • Configure Core

Figure 7-12 • Add Data Storage
46

CoreABC Instruction Modes
7. Configure the Data Storage Client according to the details displayed in the CoreABC.log file. In particular,
paste the NVM memory image file name copied earlier into the Memory content file field and enter a Client
name. Configure the Start address, Size of word, and Number of words options (Figure 7-13).

Figure 7-13 • Configure Data Storage Client
47

CoreABC Programming
Click OK and then Generate. Name the core when prompted. The configured Fusion Flash Memory
System Builder Data Storage Client component should now appear under the Hierarchy tab in your Design
Explorer, as shown in Figure 7-14.

8. Go to the Libero IDE Project Flow view and click Synplify to run synthesis.

Figure 7-14 • Hierarchy Tab in Design Explorer
48

CoreABC Instruction Modes
9. When synthesis has completed, exit Synplify and then click Place & Route to run Compile, Layout, and
Programming File generation. When you click Programming File in Designer to run FlashPoint to
generate the programming file (PDB file), you will receive the warning shown in Figure 7-15.

Figure 7-15 • Block Not Configured Warning
49

CoreABC Programming
In this case it is necessary to update the configuration. Click Modify to get the dialog shown in Figure 7-16.

Click Import Configuration File. Browse to and select the relevant EFC file for the CoreABC NVM mode
program image. The EFC file should be in a subfolder of the <Libero-project-root>\smartgen folder.

In this example, the file has the following location:

<Libero-project-root-folder>\smartgen\abc_program_in_nvm\abc_program_in_nvm.efc.

If the SmartDesign design was regenerated more recently than the FSMB Data Storage Client (which is
quite likely), you will receive the warning shown in Figure 7-17 because the input Intel Hex file is more
recent than the generated EFC file.

Click Import Content to import the NVM mode program image Intel Hex file (the Import dialog should
open on the correct folder containing this file).

Figure 7-16 • Modify Block Dialog

Figure 7-17 • Client Content File Has Changed Warning
50

CoreABC Instruction Modes
Once you have done this, the configuration should be up to date, as shown in Figure 7-18.

Click OK, Finish, and then Generate. You may be asked to confirm the overwriting of a previously
generated programming (PDB) file, in which case confirm/accept this.

10. Once the programming file has been generated, exit Designer and return to the Libero IDE Program Flow
view. You can now program the board with your CoreABC NVM mode design.

11. IMPORTANT: Bear in mind that if you change the CoreABC program such that it becomes longer than the
size (number of words) previously configured in the Fusion Flash Memory System Builder Data Storage
Client component (see Step 7), you will need to reconfigure and regenerate the file. For this reason you
should always double check the CoreABC Analysis view NVM program details against the currently
configured FMSB Data Storage Client configuration to ensure consistency.

APB Access to Instruction Memory
In NVM mode, it is possible to access the internal NVM block that stores CoreABC’s instructions through the APB
slave interface. This functionality allows CoreABC to log and retrieve information to and from NVM, for example,
while simultaneously running from NVM in cases where only one NVM block is available for use by the CoreABC
subsystem. The Instruction Store APB Access configuration option is used to select the type of APB access (if any)
to the instruction memory in NVM mode. Possible options are: None, Read Only, or Read/Write.

Note: Where read only or read/write access to the instruction memory is required, the APB slave interface which
provides access to the instruction memory should ONLY be mastered by CoreABC’s APB master interface,
typically via CoreAPB3. A separate, independent APB master should not be used to communicate with
CoreABC’s slave APB interface because this is likely to lead to erroneous behavior. Arbitration between
instruction fetches and data type read/write from/to (NVM) instruction memory is deliberately kept as simple
as possible to minimize the size of CoreABC.

The APB slave interface provides a register interface for accessing the NVM block. PAGE, SECTOR, and
SPARE_PAGE registers together are used to select a 128-byte page to be held in the NVM’s page buffer. The page
in the buffer can be read and written directly at offset 0x00 to 0x7F in the APB slave interface address space. If
writes have been used to modify the contents of the page buffer and the new data is required to be saved in the
nonvolatile array of the NVM, the PROGRAM_ENABLE and PROGRAM registers must be written (in that order,
using any data) to cause the new page to be programmed to the array. The process of programming the array takes
around 8 milliseconds to complete, during which time CoreABC will stall.

It is possible for a CoreABC program to overwrite or corrupt itself when APB read/write access to the instruction
memory is enabled in NVM mode. You must take care to avoid this. In practice this usually just means setting the
SECTOR, PAGE, and SPARE_PAGE registers in the APB interface to NVM instruction memory to sufficiently
high values. That is, read and write data type accesses to the NVM instruction memory should normally be to a
region of the NVM above the program which is located from address 0x0000 onwards.

Figure 7-18 • Configuration Up to Date
51

CoreABC Programming
Table 7-1 describes the register interface used to access the internal NVM block using the APB slave interface.

Table 7-1 • Address Map of APB Slave Interface, NVM Mode Only

Offset Register Name R/W Width
Reset
Value Description

0x00 to
0x7F

(This is a range of offsets; see
description column for more
information.)

R/W APB_DWIDTH
(8, 16, or 32)

– Any access within this range of offsets accesses
offset[6:0] in the page held in the NVM page buffer
addressed by {SPARE_PAGE_REG + SECTOR_REG
+ PAGE_REG}.

If APB_DWIDTH = 8, consecutive bytes are at offsets
0x00, 0x01, 0x02, etc.

If APB_DWIDTH = 16, consecutive halfwords are at
offsets 0x00, 0x02, 0x04, etc.

If APB_DWIDTH = 32, consecutive words are at
offsets 0x00, 0x04, 0x08, etc.

The address to the NVM is always a byte address and
the lower one or two bits of the address are ignored
when the data size is 16 or 32 bits. This means that
misaligned addresses are automatically aligned.

On an AFS090 device, the data width is restricted to
16 bits when accessing NVM. When APB_DWIDTH
is set to 32 in a design targeted at an AFS090 device,
APB accesses to the NVM instruction memory will be
consistent with the behavior for APB_DWIDTH = 16.
That is, only the lowest bit of the (byte) address to the
NVM is ignored and only the lower 16 bits of the read
and write data buses carry valid data.

0x80 PAGE_REG W 5 0x0 Page of NVM being accessed during APB accesses (to
an offset in the range 0x00 to 0x7F).

Bits [11:7] of ADDRESS input to NVM block.

0x84 SECTOR_REG W 6 0x0 Sector of NVM being accessed during APB accesses
(to an offset in the range 0x00 to 0x7F).

Bits [17:12] of ADDRESS input to NVM block.

0x88 SPARE_PAGE_REG W 1 0x0 Drives SPAREPAGE input to NVM during APB
accesses (to an offset in the range 0x00 to 0x7F).

0x8C Reserved

0x90 Reserved

0x94 PROGRAM_REG W 1 0x0 Any write to this register (regardless of the value
written) will cause the contents of the page buffer to
be programmed to the NVM array, provided the
PROGRAM_ENABLE bit is set (see
PROGRAM_ENABLE_REG at offset 0x9C).

0x98 Reserved

0x9C PROGRAM_ENABLE_REG W 1 0x0 Any write to this register (regardless of the value
written) causes a PROGRAM_ENABLE control bit to
be set.

This register is cleared by any access (read or write) to
any other APB address. This means that the register
will be cleared by writing to the PROGRAM_REG.

This register is also cleared if it is read.
52

8 – Testbench and Simulation

Unit Testbench
A unit (or user) testbench is packaged with CoreABC. A block diagram of the testbench is shown in Figure 8-1.
Identical testbenches are supplied for both the VHDL and Verilog versions of the core.

The CoreABC unit testbench runs a canned program to exercise the core. APB slave models which effectively
implement some memory are included in the testbench to allow verification of write and read back operations on
the APB interface.

To run the unit testbench, simply set the design root to the CoreABC instance (using right-click, Set As Root on the
instance name in the Hierarchy tab of the Design Explorer) and click on the Simulation (ModelSim®) button in the
Project Flow. The unit testbench should automatically launch and run. A "Tests Complete ... OKAY" type message
will appear in the simulator transcript window if the simulation is successful.

System Simulation
To simulate a CoreABC based design created in SmartDesign, generate the design and then ensure that the design
root is set to the SmartDesign design. During generation of the design, a basic system testbench is created which
instantiates the design and provides clock and reset signals to the design. Clicking on the Simulation (ModelSim)
button will run this testbench. When running the system testbench, CoreABC will execute the program entered in
the Program tab of its configuration GUI, rather than a canned program, as is the case when running the CoreABC
unit testbench.

By default, the system testbench will run and the clock and reset signals will be displayed in ModelSim's waveform
viewer. Often you will want to browse into the design and select other signals to display in the waveform viewer
before restarting and rerunning the simulation from within the simulator.

Figure 8-1 • CoreABC Verification Testbench

APB Bus

APB Slave Model APB Slave ModelCore ABC
53

Testbench and Simulation
Simulation Logging
CoreABC includes debug code that logs the operations being performed during simulation, along with the current
accumulator values. A typical log is shown below.

INS:141: XOR 00 <= 0A XOR 0A Flags:ZERO
INS:142: JUMP (Not Taken) NOT ZERO
INS:143: NOP
INS:144: LOAD 00 <= 00 Flags:ZERO
INS:145: LOADZ <= 5h

This log starts at instruction 141 and shows the accumulator being XORed with 0x0A, a jump testing the ZERO
flag, a NOP instruction, and the accumulator being loaded with 00. Finally, the internal Z register is loaded.

This feature is only available when pre-synthesis simulation is carried out. During synthesis, the debug code is
removed from the core. To enable this feature, select the Verbose Simulation Log option on the CoreABC
configuration GUI.
54

9 – Example Design Using CoreABC

This section describes the creation of a simple CoreABC based design. The design uses the general purpose outputs
of CoreABC to control eight outputs which may, for example, be used to drive LEDs on a PCB. A "rotating
1"pattern is produced on the outputs and CoreTimer is used to create a delay between pattern changes. CoreAPB3
provides the bus fabric that connects the processor and timer peripheral together. The design is illustrated in
Figure 9-1. In this example, a hard mode CoreABC will be used and the design will be targeted at a Fusion device.
Follow the instructions beginning in the "Create a New Project" section on page 56 to create the example design.

Figure 9-1 • Example CoreABC Design

CoreABC

CoreTimer

16
16 Outputs

CoreAPB 3

IO_IN IO_OUT

INTREQ

TIMINT

Outputs Are Looped Back to Inputs
55

Example Design Using CoreABC
Create a New Project
The first task is to create a new project using the Libero IDE Project Manager. Use the following steps to create the
project:

1. Start Project Manager and select Project > New Project. The New Project Wizard will appear. Enter
coreabc_example as the project name and select Verilog as the preferred HDL type, as shown in
Figure 9-2.

Figure 9-2 • New Project Wizard
56

Create a New Project
2. Click Next and on the next screen choose Fusion for the Family and select the AFS600 die and the 484
FBGA package, as shown in Figure 9-3.

3. Click Finish to exit the New Project Wizard.

Figure 9-3 • Select Family, Die, and Package
57

Example Design Using CoreABC
Create a SmartDesign Design
Click on the SmartDesign button in the Project Flow window and enter abc_system as the name of the
SmartDesign component to be created, as shown in Figure 9-4.

Click the OK button and the SmartDesign canvas for the abc_system will open.

Instantiate, Configure, and Connect the Components
Components can be instantiated on the SmartDesign canvas by dragging and dropping from the Catalog pane on the
right hand side of the Project Manager. When a component is dropped onto the canvas, a configuration window will
open for that instance of the component. You may need to expand some of the categories in the catalog to see the
cores you need. Follow the steps below to instantiate, configure, and connect the components in the design:

1. Drag and drop a CoreABC instance onto the canvas. On the Parameters tab of the CoreABC configuration
window, most of the settings can be left at their default values apart from these changes:

• Set Data Bus Width to 16

• Set Number of I/O Inputs to 16

• Set Number of I/O Outputs to 16

• Set Interrupt Support to Active High.

2. On the Program tab of the configuration window, enter the program shown in the screen shot in Figure 9-5
on page 59 and then click the OK button to dismiss the CoreABC configuration window.

Figure 9-4 • Name the SmartDesign Component
58

Instantiate, Configure, and Connect the Components
3. Drag and drop CoreAPB3 onto the SmartDesign canvas. Accept the default configuration by clicking OK
on the CoreAPB3 configuration window. Note that the APB Slot Size settings should always match for
CoreABC and CoreAPB3. This setting has a default value of 256 locations on both cores.

4. Drag and drop CoreTimer onto the SmartDesign canvas. In the CoreTimer configuration window, set the
Width option to 16 bit and leave the Interrupt active level as High and click OK.

5. Choose SmartDesign > Auto Connect (or right-click on a blank area of the canvas and select Auto
Connect). A window entitled Modify Memory Map will appear, which provides the opportunity to move

Figure 9-5 • Program Tab
59

Example Design Using CoreABC
the timer peripheral to a different slot on the APB3 bus. Accept the default (slot 0) location by clicking the
OK button. Auto connect will connect the clock, reset, and bus connections.

Some manual connections must be made as follows. Click on the TIMINT pin of CoreTimer and, while
holding the CTRL key down on the keyboard, click on the INTREQ pin of CoreABC. Right-click on either
of these highlighted pins and select Connect to connect the two pins together. Right-click on the
IO_OUT[15:0] pin of CoreABC and select Promote to Top Level to connect the outputs to the top level.
Next click again on the IO_OUT[15:0] pin of CoreABC and, while holding down the CTRL key, also click
on the IO_IN[15:0] pin of CoreABC. Then right-click on either of these highlighted pins and select
Connect to loop the general purpose outputs back to the general purpose inputs. Finally, right-click on each
of the unconnected ports and select Mark Unused (the unconnected ports are INTACT on CoreABC and
ports S1 to S15 on CoreAPB3). An X will appear at the end of the open wire connected to each port marked
as unused. The design should resemble the one shown in Figure 9-6. .

6. Choose SmartDesign > Generate Design (or right-click on a blank area of the canvas and select Generate
Design) to generate the design. If you have omitted marking unconnected ports as unused, an information
window mentioning warnings will pop up. If there are any warnings, choose SmartDesign > Check
Design Rules and review the warnings.

System Simulation
Before running a simulation of the system, we will adjust some of the simulation options.

1. In the Project Flow window, right-click on the Simulation (ModelSim®) button and select Options. A
Project Settings window will appear, with the Simulation tab selected. In the left pane visible in the

Figure 9-6 • CoreABC Design
60

System Simulation
Simulation tab, click on DO File under ModelSim options. In the right pane set the Simulation runtime to
100 µs, shown in Figure 9-7.

2. In the left pane, click on Waveforms under ModelSim options and in the right pane click the check box to
select Log all signals in the design, as shown in Figure 9-8 on page 62.

Logging all signals allows signals to be added to the waveform viewer in the simulator after the simulation
has completed. For a large design and/or a long simulation run time, it is probably better first to run a short
simulation and then add the signals of interest to the waveform viewer. The waveform format would then be
saved to a DO file (typically named wave.do) and, in the Waveforms options window, you would click the

Figure 9-7 • Project Settings – Simulation Time
61

Example Design Using CoreABC
Include DO File option and enter the appropriate filename for the Included DO File value. The Log all
signals in the design option would be deselected.

3. Click the OK button to dismiss the window.

4. Back in the Project Flow window, click the Simulation (ModelSim) button to launch the simulation. The
simulator will launch and run and, by default, all testbench signals will be displayed in the waveform
viewer.

The testbench automatically created for this design, when the design was generated in SmartDesign,
contains only clock and reset signals and these are displayed in the ModelSim Wave window (waveform
viewer) with their exact names of SYSCLK and NSYSRESET. The IO_OUT output from CoreABC is also
of interest in this design. We should be able to observe the moving 1 pattern on this port.

5. To view IO_OUT in the Wave window, click on the abc_system instance name (which should be
abc_system_0 by default) in the simulation window. After doing this, the Objects window will list all of the
signals present in abc_system. Scroll to the IO_OUT signal in the Objects window and drag and drop this
onto the Wave window. It should be possible to observe the moving 1 pattern on the IO_OUT trace. It may

Figure 9-8 • Simulation Settings
62

System Simulation
be easier to see the pattern by viewing IO_OUT in hexadecimal form. To do this, right-click the IO_OUT
signal in the Wave window and select Radix > Hexadecimal. Figure 9-9 illustrates what should be
observed when IO_OUT is displayed as a hexadecimal signal.

Figure 9-9 • ModelSim Simulation Showing IO_OUT Waveform
63

Example Design Using CoreABC
Simulation of CoreABC Only (unit test)
As well as running a system simulation, it is also possible to run a unit test on CoreABC only. To do this, ensure
that the Testbench configuration option for CoreABC is set to User (which is the default setting) before generating
the design in SmartDesign. In the Hierarchy tab of the Design Explorer window of Project Manager, browse to the
CoreABC instance. Right-click on the instance and select Set As Root, as illustrated in Figure 9-10.

With the CoreABC instance set as the design root, click the Simulation button. ModelSim will launch and
automatically run the CoreABC unit testbench. A "Tests Complete … OKAY" type message will be displayed in
the ModelSim transcript window on successful completion of the testbench, as shown in Figure 9-11 on page 65.

Figure 9-10 • Set As Root
64

Simulation of CoreABC Only (unit test)
Figure 9-11 • ModelSim Simulation Window
65

Example Design Using CoreABC
Synthesis
To synthesize the design, first ensure that the design root is set to the top level of the design, which is abc_system.
The design root may have changed if, for example, you ran a CoreABC unit test as described in the "Simulation of
CoreABC Only (unit test)" section on page 64. Click the Synthesis button in the Project Flow window to launch the
Synplify synthesis tool. Click Run to run synthesis.

Place-and-Route
To run place-and-route, click the Place&Route button in the Project Flow window to launch the Designer tool.
Some dialog windows will be displayed as Designer starts. Enter appropriate information in these windows—
normally the default entries can be accepted by clicking the OK button on each window. In Designer, click the
Compile button to run the compile stage. If you intend to implement the design on a real board, you will need to
make some pin assignments to suit the target board. One way of doing this is to use the I/O Attribute Editor (by
clicking on the button of the same name) after compile has completed. After compiling and making any necessary
pin assignments, click the Layout button to run the layout stage. After layout has completed, a programming file
can be created by clicking the Programming File button and clicking OK to the subsequent windows which pop
up after making any necessary edits to the information presented in these windows.
66

10 – CoreABC v2.3 Migration Guide

Migrating an existing design which uses CoreABC v2.3 to one which uses CoreABC v3.0 involves a number of
steps. CoreABC v2.3 required the CoreConsole tool to either create a complete CoreABC based design or to create
a CoreABC component (essentially a wrapped CoreABC instance) which would typically be instantiated in a
SmartDesign design. CoreABC v3.0 can be instantiated natively in a SmartDesign design and does not require the
CoreConsole tool at all.

A key difference to be aware of between CoreABC v2.3 and CoreABC v3.0 is that the CoreABC v2.3 is designed
for use with CoreAPB whereas CoreABC v3.0 must be used with CoreAPB3.

Follow these steps to migrate a design using CoreABC v2.3 to one using CoreABC v3.0:

1. Open the original CoreABC v2.3 based design in CoreConsole.

2. Note/record the CoreABC configuration settings and make a copy of the program code.

3. Delete the CoreABC instance from the design.

4. Save and generate the design minus the CoreABC instance. It may be necessary to make some
stitching/connection changes at this point to allow the design to be generated without the CoreABC
instance in place. For example, you may need to tie off some inputs to other cores which were previously
driven by outputs from CoreABC.

5. Import the generated design into Libero IDE / SmartDesign and, when prompted, allow the tool to convert
the design from a CoreConsole design to a SmartDesign design.

6. Open the SmartDesign design.

7. If in the original design CoreABC v2.3 was used to master CoreAPB, replace CoreAPB with CoreAPB3.

8. Instantiate CoreABC v3.0 and apply the original configurations and program code from Step 2.

9. Connect and generate the design.
67

A – Example Instruction Sequence

The following shows an example instruction sequence that uses CoreABC to control CoreAI, to detect whether a
voltage source is within a range.

// Sample code that reads an analog input and sets an output depending on a threshold
DEF ACM_SIZE 90
DEF ADC_STAT_HI_ADDR 0x11
DEF ACM_CTRLSTAT 0x0
DEF ACM_DATA_ADDR 0x04
DEF ACM_ADDR_ADDR 0x02
DEF ADC_CTRL2_HI_ADDR 0x09

// Set up UART and put out welcome 115200 baud assuming 50 MHz clock
$RESET
 APBWRT DAT8 1 8 27
 APBWRT DAT8 1 12 1

$WelcomeMessage
 WAIT UNTIL INPUT0
 APBWRT DAT8 1 0 'O'
 WAIT UNTIL INPUT0
 APBWRT DAT8 1 0 'K'
 WAIT UNTIL INPUT0
 APBWRT DAT8 1 0 10
 WAIT UNTIL INPUT0
 APBWRT DAT8 1 0 13

// Set up core AI
// Reset ACM
 WAIT WHILE INPUT1
 APBWRT DAT8 0 ACM_CTRLSTAT 1
 WAIT WHILE INPUT1

// Wait until calibrated
$WaitCalibrate
 APBREAD 0 ADC_STAT_HI_ADDR
 AND 0x8000
 JUMP IFNOT ZERO $WaitCalibrate

// Program AV, AC, AT, AG registers
 LOAD 0
$WaitRegProg
 WAIT WHILE INPUT1
 APBWRT ACC 0 ACM_ADDR_ADDR
 APBWRT ACM 0 ACM_DATA_ADDR
 ADD 1
 CMP ACM_SIZE
 JUMP IFNOT ZERO $WaitRegProg

// Wait for ADC calibrated
 WAIT WHILE INPUT1
 IOWRT 1

// Now get the POT value, which is on AC5 = Ch17 0x11
// Also mask bits
$mainloop
 APBWRT DAT16 0 ADC_CTRL2_HI_ADDR 0x1100
 WAIT WHILE INPUT0
 APBREAD 0 ADC_STAT_HI_ADDR
 AND 0x0FFF
69

Example Instruction Sequence
// Got the value in the accumalator, store in RAM in 1 mV value
 SHL0
 SHL0
 RAMWRT 0
// Now generate BCD value
 LOAD 0
 RAMWRT 11
 RAMWRT 12
 RAMWRT 13
// 0 = Value; 11-14 is BCD value
$BCD1
 SUB 1000
 JUMP IF NEGATIVE $BCD2
 PUSH
 RAMREAD 11
 INC
 RAMWRT 11
 POP
 JUMP $BCD1
$BCD2
 ADD 1000
$BCD3
 SUB 100
 JUMP IF NEGATIVE $BCD4
 PUSH
 RAMREAD 12
 INC
 RAMWRT 12
 POP
 JUMP $BCD3
$BCD4
 ADD 100
$BCD5
 SUB 10
 JUMP IF NEGATIVE $BCD6
 PUSH
 RAMREAD 13
 INC
 RAMWRT 13
 POP
 JUMP $BCD5
$BCD6
 ADD 10
 RAMWRT 14

// BCD value is now in memory; send to UART
$valueToUart
 WAIT UNTIL INPUT0
 RAMREAD 14
 ADD 0x30
 APBWRT ACC 1 0
 WAIT UNTIL INPUT0
 APBWRT DAT8 1 0 '.'
 WAIT UNTIL INPUT0
 RAMREAD 13
 ADD 0x30
 APBWRT ACC 1 0
 WAIT UNTIL INPUT0
 RAMREAD 12
 ADD 0x30
 APBWRT ACC 1 0
 WAIT UNTIL INPUT0
 RAMREAD 11
 ADD 0x30
 APBWRT ACC 1 0
70

 WAIT UNTIL INPUT0
 APBWRT DAT8 1 0 'V'
 WAIT UNTIL INPUT0
 APBWRT DAT8 0 0 10
 WAIT UNTIL INPUT0
 APBWRT DAT8 0 0 13
 JUMP $mainloop

This sequence allows CoreABC to initialize CoreAI and then sample an ADC channel, converting the value to
BCD (binary coded decimal) and transmitting the value using CoreUART. In this case, the BUSY output from
CoreAI is connected to the IO_IN(0) input of CoreABC.
71

B – Instruction Summary

This section details all the CoreABC instructions. The encoding can be found in Table B-1 on page 88.

Instructions

NOP

Operation
No operation

Flags
Unchanged

Clock Cycles
3

LOAD DAT Data

Operation
Load accumulator with immediate data value.

Flags
ZERO: Set if value is zero.

NEGATIVE: Set if value is negative.

Clock Cycles
3

LOAD RAM Address

Operation
Load accumulator with RAM location.

Flags
ZERO: Set if value is zero.

NEGATIVE: Set if value is negative.

Clock Cycles
3

73

Instruction Summary
INC

Operation
Increment the accumulator.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

AND DAT Data

Operation
AND the accumulator with the immediate data value.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

AND RAM Address

Operation
AND the accumulator with the RAM location.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

OR DAT Data

Operation
OR the accumulator with the immediate data value.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

74

Instructions
OR RAM Address

Operation
OR the accumulator with the RAM location.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

XOR DAT Data

Operation
XOR the accumulator with the immediate data value.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

XOR RAM Address

Operation
XOR the accumulator with the RAM location.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

ADD DAT Data

Operation
ADD the immediate data value to the accumulator.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

75

Instruction Summary
ADD RAM Address

Operation
ADD the RAM location to the accumulator.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

SUB DAT Data

Operation
Subtract the immediate data value from the accumulator.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

SHL0

Operation
Shift the accumulator left; LSB <= 0.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

SHR0

Operation
Shift the accumulator right; MSB <= 0.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative (not set).

Clock Cycles
3

76

Instructions
SHL1

Operation
Shift the accumulator left; LSB <= 1.

Flags
ZERO: Set if resultant value is zero (not set).

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

SHR1

Operation
Shift the accumulator right; MSB <= 1.

Flags
ZERO: Set if resultant value is zero (not set).

NEGATIVE: Set if resultant value is negative (set).

Clock Cycles
3

SHLE

Operation
Shift the accumulator left; LSB <= LSB.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

SHRE

Operation
Shift the accumulator right; MSB <= MSB.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

77

Instruction Summary
ROL

Operation
Rotate the accumulator left; LSB <= MSB.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

ROR

Operation
Rotate the accumulator right; MSB <= LSB.

Flags
ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles
3

CMP DAT Data

Operation
Compare the accumulator with the immediate data value. Uses Boolean AND.

Flags
ZERO: Set if values are equal.

NEGATIVE: Set if both MSBs are set.

Clock Cycles
3

CMP RAM Address

Operation
Compare the accumulator with the RAM location. Uses Boolean AND.

Flags
ZERO: Set if values are equal.

NEGATIVE: Set if both MSBs are set.

Clock Cycles
3

78

Instructions
CMPLEQ DAT Data

Operation
Compare the accumulator with the immediate data value. Uses subtract operation.

Flags
ZERO: Set if values are equal.

NEGATIVE: Set if accumulator is less than the data value.

Clock Cycles
3

BITCLR N

Operation
Clear accumulator bit N. Uses Boolean AND.

Flags
ZERO: Set if resultant accumulator value is zero.

NEGATIVE: Set if resultant accumulator value is negative.

Clock Cycles
3

BITSET N

Operation
Set accumulator bit N. Uses Boolean OR.

Flags
ZERO: Set if resultant accumulator value is zero (not set).

NEGATIVE: Set if resultant accumulator value is negative.

Clock Cycles
3

BITTST N

Operation
Tests accumulator bit N. Uses Boolean AND.

Flags
ZERO: Set if the bit is zero.

NEGATIVE: Undefined

Clock Cycles
3

79

Instruction Summary
APBREAD Slot Address

Operation
 Reads the APB from the specified slot and address, and stores the value in the accumulator.

Flags
Unchanged

Clock Cycles
5 plus any additional cycles caused by PREADY

APBWRT ACC Slot Address

Operation
 Writes the accumulator to the APB at the specified slot and address.

Flags
Unchanged

Clock Cycles
5 plus any additional cycles caused by PREADY

APBWRT ACM Slot Address

Operation
 Writes the value in the ACM table indexed by the accumulator to the APB at the specified slot and address.

Flags
Unchanged

Clock Cycles
5 plus any additional cycles caused by PREADY

APBWRT DAT Slot Address Data

Operation
 Writes the data value to the APB at the specified slot and address.

Flags
Unchanged

Clock Cycles
5 plus any additional cycles caused by PREADY

APBWRT DAT8 Slot Address Data

Operation
Writes only the lowest eight bits of the data value to the APB at the specified slot and address. Specifying
DAT8 rather than DAT may reduce tile count when AHB_DWIDTH 16.

Flags
Unchanged

Clock Cycles
5 plus any additional cycles caused by PREADY
80

Instructions
APBWRT DAT16 Slot Address Data

Operation
Writes only the lowest 16 bits of the data value to the APB at the specified slot and address. Specifying DAT16
rather than DAT may reduce tile count when AHB_DWIDTH = 32.

Flags
Unchanged

Clock Cycles
5 plus any additional cycles caused by PREADY

APBREADZ Slot

Operation
Reads the APB from the specified slot and address, and stores the value in the accumulator. The Z register is
used as the APB address.

Flags
Unchanged

Clock Cycles
5 plus any additional cycles caused by PREADY

APBWRTZ ACC Slot

Operation
 Writes the accumulator to the APB at the specified slot and address. The Z register is used as the APB address.

Flags
Unchanged

Clock Cycles
5 plus any additional cycles caused by PREADY

APBWRTZ ACM Slot

Operation
 Writes the value in the ACM table indexed by the accumulator to the APB at the specified slot and address.
The Z register is used as the APB address.

Flags
Unchanged

Clock Cycles
5 plus any additional cycles caused by PREADY
81

Instruction Summary
APBWRTZ DAT Slot Data

Operation
 Writes the data value to the APB at the specified slot and address. The Z register is used as the APB address.

Flags
Unchanged

Clock Cycles
5 plus any additional cycles caused by PREADY

APBWRTZ DAT8 Slot Data

Operation
Writes only the lowest eight bits of the data value to the APB at the slot and address pointed to by the Z register.
Specifying DAT8 rather than DAT may reduce tile count when AHB_DWIDTH 16. The Z register is used as
the APB address.

Flags
Unchanged

Clock Cycles
5 plus any additional cycles caused by PREADY

APBWRTZ DAT16 Slot Data

Operation
Writes only the lowest 16 bits of the data value to the APB at the specified slot and address. Specifying DAT16
rather than DAT may reduce tile count when AHB_DWIDTH = 32. The Z register is used as the APB address.

Flags
Unchanged

Clock Cycles
5 plus any additional cycles caused by PREADY

LOADZ DAT Data

Operation
 Loads the Z register with immediate data value.

Flags
ZZERO: Set if value is zero.

Clock Cycles
3

82

Instructions
DECZ

Operation
 Decrements the Z register.

Flags
ZZERO: Set if the Z register decrements to zero.

Clock Cycles
3

INCZ

Operation
Increments the Z register.

Flags
ZZERO: Set if the Z register Increments to zero.

Clock Cycles
3

ADDZ Data

Operation
Adds Data to the Z register.

Flags
ZZERO: Set if the resultant Z register value is zero.

Clock Cycles
3

IOREAD

Operation
Load the IO_IN port value into the accumulator.

Flags
Updated

Clock Cycles
3

IOWRT DAT Data

Operation
Writes the data value to the I/O register that drives the IO_OUT top-level port.

Flags
Unchanged

Clock Cycles
3

83

Instruction Summary
IOWRT ACC

Operation
Writes the accumulator to the I/O register that drives the IO_OUT top-level port.

Flags
Unchanged

Clock Cycles
3

RAMREAD Address

Operation
 Loads the accumulator with the value stored at the specified address in the internal memory.

Flags
ZERO: Set if read value is zero.

NEGATIVE: Set if read value is negative.

Clock Cycles
3

RAMWRT ACC Address

Operation
 Writes the accumulator to the specified address in the internal memory.

Flags
Unchanged

Clock Cycles
3

RAMWRT DAT Address Data

Operation
Writes the data value to the specified address in the internal memory.

Flags
Unchanged

Clock Cycles
3

84

Instructions
POP

Operation
Decrements the stack pointer and then loads the accumulator with the internal memory location addressed by
the stack pointer.

Flags
ZERO: Set if read value is zero.

NEGATIVE: Set if read value is negative.

Clock Cycles
3

PUSH DAT Data

Operation
Writes the immediate data to the internal memory location addressed by the stack pointer and then decrements
the stack pointer.

Flags
Unchanged

Clock Cycles
3

PUSH ACC

Operation
Writes the accumulator to the internal memory location addressed by the stack pointer and then decrements the
stack pointer.

Flags
Unchanged

Clock Cycles
3

JUMP Address

Operation
Jumps always to specified instruction address.

Flags
Unchanged

Clock Cycles
3

85

Instruction Summary
JUMP IF|IFNOT Condition Address

Operation
Jumps on or not on condition to specified instruction address. Conditions are specified in Table B-1 on page 88.

Flags
Unchanged

Clock Cycles
3

CALL Address

Operation
Jumps always to specified instruction address. The following instruction address is pushed onto the stack and
the stack pointer decremented.

Flags
Unchanged

Clock Cycles
3

CALL IF|IFNOT Condition Address

Operation
Jumps on or not on condition to specified instruction address. The following instruction address is pushed onto
the stack and the stack pointer decremented. Conditions are specified in Table B-1 on page 88.

Flags
Unchanged

Clock Cycles
3

RETURN

Operation
Jumps to the instruction address read from the stack. The stack pointer is incremented.

Flags
Unchanged

Clock Cycles
3

86

Instructions
RETURN IF|IFNOT Condition

Operation
Jumps on or not on condition to the instruction address read from the stack. The stack pointer is incremented.
Conditions are specified in Table B-1 on page 88.

Flags
Unchanged

Clock Cycles
3

RETISR

Operation
Jumps to the instruction address read from the stack. The stack pointer is incremented. The INTACT output is
deactivated.

Flags
Restored to the values preceding the interrupt.

Clock Cycles
3

RETURN IF|IFNOT Condition

Operation
Jumps on or not on condition to the instruction address read from the stack. The stack pointer is incremented.
The internal INTACT output is deactivated. Conditions are specified below.

Flags
Restored to the values preceding the interrupt.

Clock Cycles
3

WAIT UNTIL|WHILE Condition

Operation
Wait at the current instruction until or while a condition is true. Conditions are specified below.

Flags
Unchanged

Clock Cycles
3 to
87

Instruction Summary
HALT

Operation
Halt

Flags
Unchanged

Clock Cycles

Condition Codes
The conditions codes are shown in Table B-1.

Table B-1 • Condition Codes

Condition Description

ALWAYS Always

ZERO Accumulator zero

NEGATIVE Accumulator negative

ZZERO Z register zero

INPUT0 Input0 set

INPUT1 Input1 set and similarly for higher inputs, if available

POSITIVE Equivalent to NOT NEGATIVE

LTE_ZERO Less than or equal to zero; the combination NEGATIVE OR ZERO

GT_ZERO Greater than zero; the combination NOT (NEGATIVE OR ZERO)
88

C – List of Document Changes

The following table lists critical changes that were made in the current version of the document.

Previous
Version Changes in Current Version (50200085-4) Page

50200085-3
(January 2008)

The "CoreABC Overview" section was revised. IGLOOe, IGLOO PLUS, and ProASICPLUS

were added to the "Supported Device Families" section. The core version was revised to v3.0.
5, 6

The "Supported Interfaces" section and "Utilization and Performance" section were revised. The
values in the utilization tables were updated.

6

The "Internal Architecture" chapter was revised, including deletion of the "Advanced Peripheral
Bus" and "Soft Configuration—RAM-based Operation" sections. Figure 1-1 • CoreABC Block
Diagram was replaced.

11

The "Tool Flows" section was significantly revised. SmartDesign has replaced CoreConsole. 13

The description of interfaces was revised in the "CoreABC Interfaces" section. Table 3-1 •
CoreABC Parameters and Table 3-6 • CoreABC Port Descriptions were revised, including the
addition of new parameters and revision of existing parameters.

15, 19

The "Address Spaces" section and "Registers" section were updated. New columns, Flags and
Cycles, were added to the tables in the "Instruction Set" section and two new instructions were
added to Table 4-1 • The Boolean and Arithmetic Instruction Group.

21
through

26

The"CoreABC Operation" chapter was revised extensively. 27

The "CoreABC Configuration"chapter was revised extensively, including replacing Figure 6-1 •
Configuration Parameters and Figure 6-3 • CoreABC Configuration Validation. A number of
parameters were deleted and added.

29

The "CoreABC Programming" chapter was replaced. 35

The "Adding User Instructions" chapter was deleted. N/A

The "Testbench and Simulation" chapter was replaced. 53

The "Example Design Using CoreABC" and "CoreABC v2.3 Migration Guide" chapters are new. 55, 67

The following operations were deleted from the "Instruction Summary" chapter:

SUB RAM Address

CMPLEQ RAM Address

LOADZ RAM Address

73

50200085-2 The "Supported Device Families" section was added. 6

A note regarding frequency of IGLOO devices was added to Table 1 • CoreABC Utilization Data
(Hard Mode—instructions held in tiles) and Table 2 • CoreABC Utilization Data (Soft Mode—
instructions held in RAM).

6, 9

The “Fusion, ProASIC3/E, ProASIC3L, Axcelerator, and RTAX-S Families” section was
updated to include ProASIC3L.

13
89

List of Document Changes
50200085-1 Supported core version updated in "Core Version" section. 6

Supported version of Libero IDE updated in "Supported Tool Flows" section. 6

The LOADLOOP register was renamed Z Register. The LOADZ condition flag was renamed
ZZERO.

N/A

Table 1 • CoreABC Utilization Data (Hard Mode—instructions held in tiles) replaced and Table 2
• CoreABC Utilization Data (Soft Mode—instructions held in RAM) created.

6

"Utilization and Performance" section updated. 6

Figure 1-1 • CoreABC Block Diagram updated. 11

EQ 1-2 and EQ 1-4 updated. 13

Figure 2-1 • CoreABC Configuration Screen updated. 16

The "Simulation Flows" section was updated. 13

Table 3-1 updated, with numerous parameter changes, additions, and deletions. 19

THe "EN_DATAM Parameter" section was added. 18

"Internal Data RAM Address Space (optional)" and "I/O Address Space" sections updated. 21

The “Instruction Set” section was replaced. 26

Table 5-1 • CoreABC Instruction Encoding updated variously. 25

"Simulation Logging" section updated. 28

Figure 6-1 • Configuration Parameters and Figure 6-3 • CoreABC Configuration Validation were
updated.

29, 33

"Number of I/O Inputs" section added and "Number of I/O Flag Inputs" section modified. 30

"ALU Operation from Memory", "APB Indirect Addressing", and "Supported Data Sources"
sections added.

31

Figure 7-1 • CoreABC Programming Screen and Figure 7-2 • VHDL Analysis were updated. 35, 36

"Verification Tests" section updated. 42

“Example Instruction Sequence” appendix modified. 49

Many instructions were added or changed in the "Instruction Summary" section. 73

50200085-1 The "Core Version" and "Supported Interfaces" sections are new. 6

Values in the Configuration column were updated in Table 1 • CoreABC Utilization Data (Hard
Mode—instructions held in tiles).

6

The last paragraph was changed in the "ACM Lookup Table for Use with CoreAI" section. 27

The "Automatically Created Memory Image Files" section is new. 38

The "Updating the Program and Flash Memory Contents" section is new. 39

The "Instruction Summary" section is new. 73

Previous
Version Changes in Current Version (50200085-4) Page
90

D – Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information
about contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your
hardware, software, and design questions. The Customer Technical Support Center spends a great deal of time
creating application notes and answers to FAQs. So, before you contact us, please visit our online resources. It is
very likely we have already answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/support/search/default.aspx) for more information and
support. Many answers available on the searchable web resource include diagrams, illustrations, and links to other
resources on the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 a.m. to 6:00 p.m., Pacific Time, Monday
through Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or
phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly
monitor the email account throughout the day. When sending your request to us, please be sure to include your full
name, company name, and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
 91

http://www.actel.com/support/search/default.aspx
http://www.actel.com
mailto:tech@actel.com

Product Support
Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company
name, phone number and your question, and then issues a case number. The Center then forwards the information
to a queue where the first available application engineer receives the data and returns your call. The phone hours are
from 7:00 a.m. to 6:00 p.m., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060

Customers needing assistance outside the US time zones can either contact technical support via email
(tech@actel.com) or contact a local sales office. Sales office listings can be found at
www.actel.com/company/contact/default.aspx.
92

http://www.actel.com/company/contact/default.aspx

Index

A
ACM lookup 27
Actel

electronic mail 91
telephone 92
web-based technical support 91
website 91

address spaces 21
ALU 11
analysis 36
APB

interface 6
APB slave interface address map 52

B
block diagram 11

C
configuration

parameters 30
contacting Actel

electronic mail 91
telephone 92
web-based technical support 91

CoreABC
block diagram 11
inputs 19
overview 5
programmer’s model 21
typical system 5

cross validation of configuration fields 32

E
example design 55

F
flags 11

H
hard mode 36
hexadecimal signal display 63

I
instantiate components 58
instruction memory, access to 51
instruction modes 36
instruction set 22
internal architecture 11
interrupt operation 27

L
Libero IDE

place-and-route in 14
synthesis in 13

log signals 61

M
manual connections, example 60
migration from v2.3 67
ModelSim 62

transcript window 65

N
NVM mode 43

O
Obfuscated 13

P
place-and-route 66
ports 19
product support 92

electronic mail 91
technical support 91
telephone 92
website 91

R
rotating 1 55
RTL 13

S
soft mode 36
stack 27
synthesis 66
system simulation, example 60

T
technical support 91
testbench operation 53

U
unit test 64
utilization data 6, 9

W
web-based technical support 91
 93

Ac

206
Mo
940

Ph
Fa

Ac r
ma

© 2 re
trad
tel Corporation

1 Stierlin Court
untain View, CA
43-4655 USA

one 650.318.4200
x 650.318.4600

Actel Europe Ltd.

River Court,Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom

Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Buillding 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan

Phone +81.03.3445.7671
Fax +81.03.3445.7668

http://jp.actel.com

Actel Hong Kong

Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong

Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com.cn

tel is the leader in low-power FPGAs and mixed-signal FPGAs and offers the most comprehensive portfolio of system and powe
nagement solutions. Power Matters. Learn more at www.actel.com.

010 Actel Corporation. All rights reserved. Actel, Actel Fusion, IGLOO, Libero, Pigeon Point, ProASIC, SmartFusion and the associated logos a
50200085-5/9.10

emarks or registered trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective owners.

http://jp.actel.com
http://www.actel.com.cn
http://www.actel.com

